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Introduction 
 

   The goal of this paper is to describe a mathematical theory, called the max-plus 
algebra, which affords a uniform treatment of many problems that arise in the field of 
Operations Research.  We illustrate several applications of this theory with detailed 
examples from transportation networking, project scheduling, and communications.   
  The field of Operations Research emerged in the 1950s as a scientific approach to 
decision making.  Most problems in Operations Research involve a “search for 
optimality.”  The max-plus algebra uses the operation of taking a maximum, thus making 
it an ideal candidate for mathematically describing problems in operations research.  
Most often, problems in Operations Research have been solved by the development of 
algorithmic procedures that lead to optimal solutions.  
 The max-plus algebra emerged in the late 1950s, soon after the field of Operations 
Research began to develop.  This algebraic structure is a semi-ring whose elements are 
the usual real numbers along with −∞ , where the operator of addition, ⊕ , represents 
taking a maximum and the operator of multiplication, ⊗ , represents standard addition.  
Because there is no additive inverse in the max-plus algebra, problem formulation and 
solutions require different techniques.  Although many individuals have researched 
possible uses and theories regarding max-plus, the first attempt of a complete study, 
Minimax Algebra, by Cuninghame-Green, was not published until 1979 [4].  Many of 
these initial studies were limited to what are now called path algebras.  More recently, the 
usage of max-plus has been extended to consider Discrete Event Systems and Dynamic 
Programming [5].  
  In most of the literature, the basic properties, theorems, and proofs regarding 
max-plus have become buried in references.  Applications of max-plus, although 
mentioned in the literature, are not usually demonstrated.  In this paper, we present the 
basics properties of max-plus and min-plus, including how to solve systems of max-plus 
equations, and the properties of max-plus eigenvalues and eigenvectors for irreducible 
matrices.  We then follow up these properties and theorems with applications that 
motivate the theory, including the shortest route problem, project scheduling, the 
synchronized event problem, and an airport scheduling problem.  In the appendix, there is 
also a discussion of how the minimum spanning tree problem can be written in terms of 
min-plus.  While max-plus is not necessary to formulate solutions to these applications 
problems, it is certainly interesting that they can all be formulated and solved using the 
max-plus (or min-plus) algebra. 
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Chapter 1: The Max-Plus Algebra 
 
1.1 Basic Properties of Max-plus 

 
  The max-plus algebra is an algebraic structure consisting of real numbers where 
the standard operations of addition and multiplication are replaced by the operation of 
taking a maximum and the operation of standard addition, respectively.  More precisely, 
let  denote the set , let max {−∞∪ } ⊕  be a binary operator on with max

(max , )x y x y⊕ = , and let ⊗  be the binary operator on  with max x y x y⊗ = + .  Then 
the max-plus algebra is the algebraic structure consisting of  and the binary 
operations 

max

⊕  and ⊗ . 
 
  Interesting outcomes of the use of maximum as the addition operator are the 
additive identity and the consequent lack of an additive inverse in this system.  When we 
seek an additive identity, we look for an element z such that z x x⊕ =  for all .  
The only way to guarantee this is to choose 

maxx∈
z = −∞ .  Thus, the max-plus algebra has −∞  

as its additive identity.  Clearly, the operation of taking a maximum is associative and 
commutative, hence max( ,⊕ )  is an abelian semi-group. max( , )⊕  is not a group, 
because  has an additive inverse if and only if maxx∈ x = −∞ .   
 
  A consequence of the lack of additive inverses is that for ,a b ,∈  the equation 
a x b⊕ =  need not have a unique solution.  Indeed, the solution to a x b⊕ =  is x b=  if 
and only if a .  If , then the solution for x can be any number less than or equal 
to b, and if a , then 

b<
b>

a b=
a x b⊕ =  has no solution.  The system a x⊕ = −∞  has a solution 

 only if .  Since (x = −∞) a = −∞ a a a⊕ = , every element of  is idempotent with 
respect to 

max

.⊕  
 
 Because max( , )⊕  is not an abelian group, max( , , )⊕ ⊗  does not satisfy the 
properties of a ring.  However, we now show that max( , , )⊕ ⊗  satisfies the properties of 
a commutative semi-ring [5]. 
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Theorem 1.1.1: max( , ,⊕ ⊗)  satisfies the following properties: 
1. max( , )⊕ is an abelian semi-group. 
2. Multiplication is associative and commutative. 
3. There is a multiplicative identity. 
4. Distributive properties of ⊗  over ⊕ , i.e. for max, ,x y z∈  

a) ( )z x y z x z y⊕ ⊗  ⊗ ⊕ = ⊗
b) ( )x y z x z y z⊕ ⊗  ⊕ ⊗ = ⊗

5. The additive identity, −∞ , is absorbing under multiplication, i.e. 
for maxx∈ , ( ) . x x−∞⊗ = ⊗ −∞= −∞

  

 
Proof:   
1.  This was in the discussion immediately preceding the statement of the theorem.     
2. Let max .  Then,  , ,x y z∈ ( ) ( ) ( ) ( )x y z x y z x y z x y z⊗ ⊗ = + + = + + = ⊗ ⊗  and 
 x y x y y x y x⊗ = + = + = ⊗ . 
3. Note 0 0 0 0x x x x⊗ = + = = + = ⊗ x .  Thus 0 is the multiplicative identity. 
4. Let max Then , , .x y z∈ ( ) max( , ) max( , )z x y z x y z x z y⊗ ⊕ = + = + +  

z x z y= ⊗ ⊕ ⊗ . Statement (b) follows from (a) and the commutativity of ⊕  and ⊗ .   
5. Let maxx∈ , then ( )( )x x⊗ −∞ = + −∞ = −∞ .  ■  
 
  The max-plus algebra can be extended to matrices.  Max-plus matrix addition of 

matrices is only defined for matrices of the same dimensions.  We define the max-plus 

matrix sum A B⊕  to be the matrix resulting from taking entrywise maximums.  The 

max-plus multiplication of a matrix by a scalar results in a matrix where each entry has 

been increased by the scalar quantity.   

 
Max-plus Matrix Operations: 
Let  and ijA a⎡ ⎤= ⎣ ⎦ ijB b⎡ ⎤= ⎣ ⎦  be m n×  matrices with entries in  and . max maxc∈

         max( , )ij ij ij ijA B a b a b⎡ ⎤ ⎡ ⎤⊕ = ⊕ = ⎣ ⎦⎣ ⎦  

           ij ij ijc A c a c a a c A c⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ = ⊗ = + = + = ⊗⎣ ⎦ ⎣ ⎦ ⎣ ⎦
Let ijA a⎡ ⎤= ⎣ ⎦  be  and m n× jkB b⎡ ⎤= ⎣ ⎦  be n p×  with entries in . max

          Then AB  is the  matrix whose  entry is  m p× ,i j
          ( ) ( ) ( ) ( )1 1 2 2 maxi j i j i n n j i k k jj

a b a b a b a b⊗ ⊕ ⊗ ⊕ ⊕ ⊗ = + . 
 

 3



  Throughout the paper, we use AB  for max-plus multiplication of matrices A and 
B.  As we never use “usual matrix multiplication,” this should not lead to difficulties.  
Because calculations in the max-plus algebra can take some getting used to, we find it is 
helpful to pause at this point and elaborate with a numerical example.  
 
Example: Matrix Operations 

  Let  and 
10
5 3

A
−∞⎡ ⎤

= ⎢ ⎥
⎣ ⎦

8 2
7 0

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

   
  Matrix Addition: 

  
10 8 2 10 2

7 35 7 3 0
A B

⎡ ⎤⊕ −∞⊕ ⎡ ⎤
⊕ = =⎢ ⎥ ⎢ ⎥

⊕ ⊕ ⎣ ⎦⎢ ⎥⎣ ⎦
 

 
  Scalar Multiplication: 

    
5 10 5 ( ) 15

5
5 5 5 3 10 8

A
⊗ ⊗ −∞ −⎡ ⎤ ⎡

⊗ = =⎢ ⎥ ⎢⊗ ⊗⎣ ⎦ ⎣

∞⎤
⎥
⎦

 
Matrix Multiplication: 

10 8 2
5 3 7 0

10 8 ( ) 7 10 2 ( ) 0

5 8 3 7 5 2 3 0

18 ( ) 12 ( ) 18 12
13 713 10 7 3

AB
−∞⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤⊗ ⊕ −∞ ⊗ ⊗ ⊕ −∞ ⊗

= ⎢ ⎥
⊗ ⊕ ⊗ ⊗ ⊕ ⊗⎢ ⎥⎣ ⎦

⎡ ⎤⊕ −∞ ⊕ −∞ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⊕ ⊕ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 

Theorem 1.1.2: Matrix multiplication in max( , , )⊕ ⊗  is associative, but not 
necessarily commutative. 

  

 

Proof: 
Let A be , B be , and  be m n× n p× C p q×  matrices with entries from .   max

The  entry of (  is ,i )AB C ( )( ) ( )
,

max max maxi j j k k i j j k kk j k j
a b c a b c⎛ ⎞+ + = + +⎜ ⎟

⎝ ⎠
. 

The  entry of ,i ( )A BC  is ( )( )( ) ( )
,

max max maxi j j k k i j j k kj k j k
a b c a b+ + = + + c

)

. 

Thus , and max-plus matrix multiplication is associative. ( ) (AB C A BC=
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To show that matrix multiplication is not necessarily commutative, consider the 
following simple counterexample: 
 

  is not equal to .  ■  
1 2 1 0 2 2
3 4 0 0 4 4
⎛ ⎞⎛ ⎞ ⎛

=⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

1 0 1 2 3 4
0 0 3 4 3 4
⎛ ⎞⎛ ⎞ ⎛

=⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝ ⎠

⎞
⎟

 
Powers in the max-plus algebra correspond to the usual scalar multiplication in 

the real numbers.  Let n be a positive integer and a∈ .  Then we define  as follows: na

 times  times

n

n n

a a a a a a a n= ⊗ ⊗ ⊗ = + + + = ⋅a  

For the max-plus algebra, we also include −∞  in the domain.  Thus, we need only verify 

that the rule  will hold for na n= ⋅a a = −∞  and . 0n >

 times  times

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n

n n

n−∞ = −∞ ⊗ −∞ ⊗ ⊗ −∞ = −∞ + −∞ + + −∞ = ⋅ −∞ = −∞  

 
Theorem 1.1.3: In max( , , )⊕ ⊗ , with ,x y +∈  and maxa∈ , the following 
exponent properties hold: 

1. x y xa a a +⊗ = y  
2. ( )x y xa a ⋅= y   

   

 
Proof: 
Let a  and . ∈ ,x y +∈
1. ( )x y xa a x a y a x y a a y+⊗ = ⋅ + ⋅ = + ⋅ =  

( ) ( )x y−∞ ⊗ −∞ = ( ) ( ) ( ) ( ) ( )x y+−∞ ⊗ −∞ = −∞ + −∞ = −∞ = −∞  
2. ( ) ( ) ( ) ( )x y y x ya x a y x a x y a a ⋅= ⋅ = ⋅ ⋅ = ⋅ ⋅ =  

( )( ) ( ) ( )
yx y x y⋅−∞ = −∞ = −∞ = −∞   ■  

 

Notice that for , we can find y such that x∈ 0x y⊗ =

x
 (recall that 0 is the 

multiplicative identity in max-plus).  So each element ∈  has a multiplicative inverse 
1x x− = − .  In , there is no multiplicative inverse for zero, and similarly, in ( , ,+ ⋅)

( )

∈

max , ,⊕ ⊗

,x y

, there is no multiplicative inverse for the additive identity, .  From this 
definition of the multiplicative inverse, we can extend the properties in Theorem 1.1.3 to 
include  with the footnote that if , then (

−∞

0n > ) n−−∞  will be undefined. 
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In optimization problems where one is searching for some kind of minimization, 
it is easier to formulate the problems in terms of a related algebraic structure, called the 
min-plus algebra.  The min-plus algebraic structure has elements  with 
binary operations 

min { }= ∪ ∞

⊕  and .  For ⊗ min,x y∈ , min( , )x y x y⊕ =  and x y x⊗ = + y . 
Indeed, min( , , )⊕ ⊗  and max( , , )⊕ ⊗  are isomorphic algebraic structures.  Let 

max min:θ →  by ( )x xθ = − .  Then ( ) max( , ) min( , ) ( )x ( )y x y x yθ⊕ = − = ⊕x yθ θ− − =  
and ( ) ( )x y x yθ ⊗ = − + =  ( ) ( ) ( ) ( )x y x yθ θ− + − = ⊗ .  Thus, the result about the max-
plus algebra can be translated into a result about the min-plus algebra, that is, 

min( , , )⊕ ⊗  is also a commutative semi-ring.  In particular, we will see the min-plus 
algebra used in the shortest route problem (Section 2.1).  Commonly in papers, the 
operation ⊕  can be used to denote either a maximum or minimum, depending on the 
situation.  To distinguish between these cases and avoid confusion, in this paper we have 
adopted the notation ⊕  for maximum and ⊕  for minimum. 
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1.2 Solving Systems of Equations in Max-plus 
 
  In this section, we develop the theory of linear systems of equations for the max-
plus arithmetic [3, 4].  Although there are some parallels between solving systems of 
equations in max( , , )⊕ ⊗  and in ( ), ,+ ⋅ , the operation ⊕  creates some interesting 
differences.  In general, we would like to be able to solve the matrix equation , 
where A is an  matrix,  is an 

A =x b
m n× x 1n×  vector, and  is an b 1m×  vector.  It will be 

helpful if we look at the equivalent system of equations in the usual arithmetic to first get 
an idea for how to go about solving the system.  We can rewrite A =x b  as the following 
detailed matrix equation and then the equivalent system of Max-plus equations:  
 

     A =x b ⇔

11 12 1 1 1

21 22 2 2 2

1 2

n

n

m m mn n m

a a a x b
a a a x b

a a a x b

⎛ ⎞⎛
⎜ ⎟⎜
⎜ ⎟⎜ =
⎜ ⎟⎜
⎜ ⎟⎜⎜ ⎟⎜
⎝ ⎠⎝

⎞ ⎛ ⎞
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟⎟ ⎜ ⎟
⎠ ⎝ ⎠

 

     ⇔

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n

a x a x a x b

a x a x a x b

a x a x a x b

⊗ ⊕ ⊗ ⊕ ⊕ ⊗ =

⊗ ⊕ ⊗ ⊕ ⊕ ⊗ =

m⊗ ⊕ ⊗ ⊕ ⊕ ⊗ =

 

 
Written in standard notation, we must simultaneously solve the following system: 
 

{ }
{ }

{ }

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

max ( ),( ), , ( )

max ( ),( ), , ( )

max ( ),( ), ,( )

n n

n n

m m mn n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =

+ + + =

m+ + +

…

…

… =

 

 
We first consider the case that a solution exists and some of the entries of b  are . 
Without loss of generality, we can reorder the equations so that the finite entries of b 
occur first: 

−∞

 
111 12 1 1

21 22 2 2

1 2

b
n

bn k

n n nn n

a a a x
a a a x

a a a x

−∞

−∞

⎛ ⎞⎛ ⎞⎛
⎜ ⎟⎜ ⎟⎜
⎜ ⎟⎜ ⎟⎜ = ⎜ ⎟⎜ ⎟⎜
⎜ ⎟⎜ ⎟⎜⎜ ⎟⎜ ⎜ ⎟⎝ ⎠⎝ ⎝ ⎠

⎞
⎟
⎟
⎟
⎟⎟
⎠
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Written in standard notation, this gives the following system of equations: 
 

( )

( )
( )

( )

11 1 12 2 1 1

1 1 2 2

1,1 1 1,2 2 1,

1 1 2 2

max , , ,

max , , ,

max , , ,

max , , ,

n n

k k kn n k

k k k n n

n n nn n

a x a x a x b

a x a x a x b

a x a x a x

a x a x a x

+ + +

+ + + =⎧
⎪
⎪
⎪ + + + =⎪
⎨

+ + + =⎪
⎪
⎪
⎪ + + + = −∞⎩

…

…

…

…

−∞
 

 
We can renumber the variables so that those j such that 1, ,, ,k j m ja a+ = −∞…  occur first: 
 

1 1

1

1 2

3

k

n

x b

x b

x

x

A A

A +

−∞ −∞
−∞

−∞ −∞
−∞

⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠⎝ ⎠

 

 

Let the dimensions of  be .  Let  and 1A k ×
1

k

b

b

⎛ ⎞
⎜ ⎟′ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

b
1x

x

⎛ ⎞
⎜′ = ⎜
⎜ ⎟
⎝ ⎠

x ⎟
⎟ .  Note that if  

has a solution, then , and 

A =x b

1+k nx x ∞= = − A ′ ′=x b .  Thus, A =x b  has a solution if and 
only if  is a solution to  and solutions to ′x 1A b′ =x ′ A =x b  are  

−∞

−∞

′⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

x
x . 

 
Therefore, the solvability of a system with infinite entries in  can be reduced to 

that of a system where all the entries in 

b
′b

b

ja x

 are finite.  Hence, we restrict our attention to 

systems  where all the entries of  are finite.  If there is to be a solution to the 

system of max-plus equations, then 

A =x b

ij ib+ ≤  for all { }1, ,i m∈ …  and { }1, ,j n∈ … .  To 

search for a solution to the system, we first consider each component of x  separately.  

Consider, for example, 1x .  If there is a solution to the system, then  for 

.  Thus 
1 1i ia x b+ ≤

1,2,= ,i m… 1 1iix b a≤ −  for each i, leading us to the following system of upper 

bounds on 1x : 
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1 1 11

1 2 21

1 1m m

x b a
x b a

x b a

≤ −
≤ −

≤ −

 

 
If this system of inequalities has a solution, then it satisfies 

{ }1 1 11 2 21min ( ),( ), ,( )m mx b a b a b a≤ − − −… 1 . 
Similarly, we can find the possible solutions for 2, , nx x… , giving us the following 
system of inequalities on the entries of :  x
 

{ }
{ }

{ }

1 1 11 2 21

2 1 12 2 22

1 1 2 2

min ( ),( ), , ( )

min ( ),( ), ,( )

min ( ),( ), ,( )

m m

m m

n n n m

x b a b a b a

x b a b a b a

x b a b a b a

≤ − − −

≤ − − −

≤ − − −

…

…

…

1

2

mn

 

 
This leads us to a candidate for a solution to A =x b , which we will denote by . ′x
 

1

2

n

x
x

x

′⎛ ⎞
⎜ ⎟′⎜ ⎟′ =
⎜ ⎟
⎜ ⎟⎜ ⎟′⎝ ⎠

x   where 

{ }
{ }

{ }

1 1 11 2 21

2 1 12 2 22

1 1 2 2

min ( ),( ), ,( )

min ( ),( ), , ( )

min ( ),( ), , ( )

m m

m m

n n n m

x b a b a b a

x b a b a b a

x b a b a b a

′ = − − −⎧
⎪
′ = − − −⎪

⎨
⎪
⎪ ′ = − − −⎩

…

…

…

1

2

mn

 

 
  Before we pause for a numerical example, let us introduce another matrix to 
simplify the process of solving a system of max-plus equations.  We define the 
discrepancy matrix,  as follows: ,AD b

 

1 11 1 12 1 1

2 21 2 22 2 2
,

1 2

n

n
A

m m m m m mn

b a b a b a
b a b a b a

D

b a b a b a

− − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟− − −⎝ ⎠

b  

 
Note that  is simply a matrix with all the upper bounds of the ,AD b ix ’s and that each ix′  
can be found by taking the minimum of the  column of . thi ,AD b
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Example 1.2a: Max-Plus System with only one solution 
 

Solve  where A =x b

2 3 1
0 4 6
3 1 2
9 6 3

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

, 
1

2

3

x
x
x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x , and . 

6
10
5

11

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

A quick calculation gives the discrepancy matrix:  ,

4 3 5
10 6 4
2 4 7
2 5 8

AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

 The entries for the candidate solution can be found by taking the minimum of each 
column of . ,AD b

     
( )
( )
( )

1

2

3

min 4,10,2,2 2

min 3,6,4,5 3

min 5,4,7,8 4

x

x

x

′ = =

′ = =

′ = =

Thus,  is the candidate solution to (2 3 4)T′ =x A =x b .  We can verify that this is 
indeed a solution to  by plugging it back in:   A =x b
 

( )
( )
( )
( )

max 4,6,52 3 1 6
2

max 2,7,100 4 6 10
3

max 5,4,23 1 2 5
4

max 11,9,79 6 3 11

⎛ ⎞⎛ ⎞ ⎛
⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜− ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

⎞
⎟
⎟
⎟
⎟⎟
⎠

 

 

As we shall see, this will be the only solution to the matrix equation. ■  
 
Example 1.2b: Max-Plus System with no solution 
 

Solve  where A =x b

2 3 1
0 4 6
3 1 2
9 6 3

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

, 
1

2

3

x
x
x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x , and . 

6
12
5
9

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

Then , which gives us the candidate solution of . ,

4 3 5
12 8 6
2 4 7
0 3 6

AD

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

b
⎟
⎟ ( )0 3 5 T′ =x

When we try  in the matrix equation, we see that it is not a solution: ′x
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( )
( )
( )
( )

max 2,6,62 3 1 6
0

max 0,7,110 4 6
3

max 3,4,33 1 2
5

max 9,9,89 6 3 9

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ = =⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

11
4

⎛
⎜
⎜
⎜
⎜⎜
⎝

⎞
⎟
⎟
⎟
⎟⎟
⎠

 ≠      

6
12
5
9

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

The bolded entries do not match the corresponding entries of b .  Since the components 
of  are the upper bounds, we know that a solution  must satisfy , , and 

.  But then, from the second row, we have 

′x
5≤

x 1 0x ≤ 2 3x ≤

3x ( )3, 6x1 2x xma 0, 4 2x 11 1+ + + ≤ < .  
Thus, this matrix equation has no solution.  ■  
 
Example 1.2c: Max-Plus System with infinitely many solutions 
 

Solve  where A =x b

2 3 1
0 4 6
3 1 2
9 6 3

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

, 
1

2

3

x
x
x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x , and . 

8
13
5

10

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

Then , which gives us the candidate solution of . ,

6 5 7
13 9 7
2 4 7
1 4 7

AD

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

b
⎟
⎟ ( )1 4 7 T′ =x

Check  is a solution: ′x

( )
( )
( )

( )

max 3,7,82 3 1 8
1

max 1,8,130 4 6 13
4

max 4,5,53 1 2 5
7

max 10,10,109 6 3 10

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

   

 
Thus  is a solution to the given matrix equation.  But notice that there are other 
solutions that also work.  Indeed, each  of the form {  where  and 

 is also a solution to .  ■  

′x

4}
x : ( , ,7)Ta b=x x 1a ≤

b ≤ A =x b
 
In order to predict the number of solutions to the matrix equation A =x b , it will be 
useful to define a “reduced” discrepancy matrix, ,AR b : 
 

  , ( )A ijR r=b  where  
1   if  minimum of column 

0   otherwise
ij

ij

d j
r

=⎧
= ⎨
⎩
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Below we show  and ,AD b ,AR b  for the examples 1.2a, b, and c.  The bold entries for each 
 show where the minimum occurs in each column.  Notice that these are the ‘one’ 

entries of each corresponding 
,AD b

,AR b . 
 

Example 1.2a: 
One solution 

Example 1.2b: 
No solutions 

Example 1.2c: 
Infinite solutions 

,

4 5
10 6

4 7
5 8

AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

3
4

2
2

 ,

4
12 8 6
2 4 7

6

AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

3 5

0 3

 ,

6 5
13 9
2AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

7
7

4 7
1 4 7

 

,

0 0
0 0

0 0
0 0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

1
1

1
1

 ,

0
0 0 0
0 0 0

0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

1 1

1 1

 ,

0 0
0 0
0AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

1
1

1 1
1 1 1

 

 
Recall that for a column, j , in the  matrix, the minimum entry of the column is the 
maximum solution to the system of inequalities for 

,AD b

jx .  In order to change this system of 
inequalities to a system of equalities, we must have equality in each row inequality, i.e. 
there must be at least one minimum in each row of , i.e. there must be at least one 1 
in each row of 

,AD b

,AR b  for a solution to exist.  Indeed, we see that in example 1.2b, there are 
rows of ,AR b  that contain no 1’s (zero-rows). 
 

Theorem 1.2.1: Let  be a matrix equation in A =x b max( , , )⊕ ⊗  where  
is an m  matrix, and  is a 

A
n× b 1n×  vector with all entries finite.   

a) If there is a zero-row in the reduced discrepancy matrix, ,AR b , then 
there is no solution to the matrix equation. 

b) If there is at least one 1 in each row of the reduced discrepancy matrix, 

,AR b , then ′x  is a solution to A =x b . 
  

 
Proof: 

a) Without loss of generality, denote the zero-row of ,AR b  by row k.  Suppose to the 

contrary that x  is a solution of A =x b .  Then ( )nj jmi k k jx b a b a≤ − < − .  Thus 
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j k j kx a b<  for all j.  Hence, x  does not satisfy the kth equation and is not a solution 

to A =x b . 

+

b) We prove the contrapositive.  Suppose ′x  is not a solution to the matrix equation. 

By definition, j k kjx b a′ ≤ −  for all .  Hence ,j k max( )kj j kjj
a x b′+ ≤

kb

 and if  is not a 

solution then there is a k with 

′x

x( kj )ja x′+ < .  This is equivalent to j kma
j kjx b a< −′  

for all j.  Since ( )minj jx b a′ = −  for some , there is no entry in row k of ,AR b  that 

is 1.  ■  
 
Now, provided we know that a solution to A =x b  exists, how can we tell the number of 
solutions to this equation?  We need to define the concept of fixed entries in ,AR b .     
 

Definition: The 1 in a row of ,b  is a variable-fixing entry if either  AR
a) it is the only 1 in that row (a lone-one), or 
b) it is in the same column as a lone-one. 

     The remaining 1s are called slack entries. 
 
A 1 in the jth column of ,AR b  signifies the minimum of the upper bounds for jx .  If there 
are no other ones in the row where a one occurs, then the only way that the equation 
corresponding to that row can be solved is to have jx  achieve the bound.  This causes the 
value of jx  to be fixed at a specific value, i.e. it is a variable-fixing entry.  To illustrate 
this principle, we circle the variable-fixing entries for the previous examples in the 
following table. 
 

Example 1.2a: 
One solution 

Example 1.2b: 
No solutions 

Example 1.2c: 
Infinite solutions 

  

,

0 1 1
0 0 0
0 0 0
1 1 0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b  ,

0 1 0
0 0 1
1 0 0
1 0 0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b ,

0 0 1
0 0 1
0 1 1
1 1 1

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

 
  In Example 1.2a, all of the non-zero entries are variable-fixing entries.  The first 
row equation fixes the 2x  component, 2 3x = .  The second row equation fixes the 3x  
component, .  The third row equation fixes the 3x = 4 1x  component, .  When we 1 2x =
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reach the fourth row equation, all the components of  have been chosen.  None of the 
components can be changed without causing an inequality in one of the first three rows. 

x

,A

 
  In Example 1.2c, there are slack entries in R b .  The first row equation fixes the 

3x  component, .  The component solution to the second row equation has already 
been fixed by the first row equation.  In the third row equation, there are two possible 
ways to achieve equality – with either 

3 7x =

2 4x =  or 3x 7= .  But we have already fixed the 

3x  component to be 7.  So now as long as 2x 4≤ , we will not cause any problems in this 
or any of the row equations above it.  Similarly, in the fourth row equation, the equality 
can be satisfied by using the already fixed component of 3 7x = .  As long as  and 

, the row equation will always be true. 
1 1x ≤

2x 4≤

 
  The following theorem shows that in order for A =x b  to have a unique solution, 
each component of  must be fixed, i.e. there can be no slack entries (a slack entry can 
only exist if there are no variable-fixing entries in that column).  Thus, for  to 
have a unique solution, there must be a lone-one in each column.   

x
A =x b

 
Theorem 1.2.2: Let  be a matrix equation in A =x b max( , , )⊕ ⊗  where A  
is an m  matrix,  is an n× b n 1×  vector with finite entries, and a solution to 
the equation exists.   

a) If each column of ,AR b  has a lone-one, then the solution to the matrix 
equation is unique. 

b) If there are slack entries in ,AR b , then there are infinite solutions to the 
matrix equation. 

  

 
Proof: 
a) If there is a lone-one in each column of ,AR b , then there is a variable-fixing entry in 

each column of ,AR b .  There can be no slack entries since all the columns contain a 
variable-fixing entry.  All the components of x  are fixed and thus the solution is 
unique. 

b) Let ijr  be one of the slack entries in ,AR b  and let x  be a solution to the equation 
A =x b .  Since ijr  is not fixed, then there are no fixed entries in the jth column of 

,AR b .  Thus, equality can be achieved for each row equation without using the jx  
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component.  Thus, while the value of jx  does indicate the maximum value possible 
for this component, any smaller value will not alter the existence of equalities in the 
row equations. ■  

 
 

  It is interesting to note that in ( ), ,+ ⋅ , an m n×  system of linear equations has 
either no solution, one solution, or an infinite number of solutions.  Similarly, for an 

 system of linear equations in m n× ( )ma , ,x ⊕ ⊗ , we also have either no solution, one 
solution, or an infinite number of solutions.  
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1.3 Max-plus Eigenvalues and Eigenvectors 
 

  Before we look at the eigenproblem in the max-plus setting, we review some 
terminology from graph theory [1, 2].  For an n n×  matrix, A, we can define the digraph 
(or directed graph) of A, as the graph with vertices 1,  where there is a directed arc 
from i  to 

,n…
j  with weight  if and only if ija ija ≠ −∞

ji
.  A path is a sequence of distinct 

vertices  such that there is an arc from  to 1 2, ,i i , ki… 1ji +  for 1, , 1j k= −… .  We can 
refer to the weight of a path as the sum of the weights of the arcs that make up that path.  
The digraph, , is strongly connected if there is a path from any vertex to any other 
vertex.  If  is strongly connected, then we say the matrix A is irreducible.  For 
example, the matrix A below is irreducible: 

AD

AD

 
1v 2v

3v

2 4
3

5 1

      gives the digraph  
2 5
3 4

1
A

−∞⎛ ⎞
⎜= ⎜
⎜ ⎟−∞ −∞⎝ ⎠

⎟−∞⎟

 
 

The matrix B  (shown below) is reducible since there is no path from  to any other 
vertex.  

3v

1v 2v

3v

2 4
3

5 1

 

      gives the digraph 
2 5
3 4 1B

−∞⎛ ⎞
⎜= ⎜
⎜ ⎟−∞ −∞ −∞⎝ ⎠

⎟
⎟

 
  A cycle, σ , is a sequence, , of distinct vertices such that ,    

. of adjacent arcs in the digraph that starts and ends at the same vertex 
and does not travel through any other vertex more than once.  When we discuss the cycle 
in reference to a digraph, it can be described as a sequence of vertices, 

1 2, , , ki i i… 1 2i → i

1

* i

2 3, , ki i i→ …

: i j

i→

σ → → → .  We can also refer to a cycle within a matrix, *: , ,ij ia,jka aσ … .  The 
number of arcs in a cycle is called the length, σ .  Note that for any σ , .  In a 
strongly connected graph, there must be at least one cycle originating at each vertex.  For 
matrix A given in the first example,   has length 3 and originates at .  
A loop is a cycle with length 1; in the digraph , shown above, there are loops at  
and .  For a cycle 

nσ ≤

v
1 2v v→ → 3v → 1v 1v

AD 1

2v σ , the sum of its arc weights divided by the length, σ  is called the 
mean, ( )M σ .  For a matrix A with distinct cycles 1 2, , , nσ σ … σ , we define the 

 16



maximum cycle mean by ( ) max ( )ii
A Mμ σ= .  A graph that contains only the cycles 

with the maximum cycle mean is called a critical graph. 
   

  Let A  be an  matrix with entries from .  Then we define n n× max λ∈

−∞

 to be 

the eigenvalue of A with eigenvector , where at least one entry is not , provided x λ  

and  satisfy the max-plus equation x A λ= ⊗x x .  We refer to ( , )λ x  as an eigenpair for 

A.  When we find a particular eigenvector, any max-plus scalar multiple of it is also an 

eigenvector (Lemma 1.3.1).  When we refer to a unique eigenvector, we include the 

scalar max-plus multiples in the uniqueness.  

 

Lemma 1.3.1: Let A be an n n×  matrix with eigenpair ( , )λ x  and .  
Then 

c∈
( , )cλ ⊗ x  is also an eigenpair of A. 

 

Proof: 

Suppose ( , )λ x  is an eigenpair for the irreducible n n×  matrix A.  Then we have 

A λ=x ⊗x .  Multiplying both sides of the equation by the scalar c, and then using the 

commutativity of max-plus scalar multiplication, and the associativity of max-plus matrix 

multiplication: 

( )
( )

c A c
A c

A c

     

( )
c

c

λ
λ

λ

⊗ = ⊗

⊗ =

⊗ = ⊗

n

⊗x x
⊗ ⊗

⊗

x x

x x ■

 
 
 
  There are many known results for the topic of max-plus eigenvalues and 
eigenvectors  [1, 3, 4]; in this paper, we present the results that pertain to irreducible 
matrices, since this case is used in the application section 2.4.  Before we consider the 
irreducible matrix, there are several results that we first prove for the case of a matrix 
with at least one cycle. 
 

Lemma 1.3.2: Let A be an n×  matrix with at least one cycle, then 
a) A has finite eigenvalue k if and only if k A− ⊗  has eigenvalue 0. 
b) ( )A mμ =   if and only if ( ) 0m Aμ − ⊗ = . 
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Proof: 
a) Let ( )0, x  be the eigenpair for k A− ⊗ .   
 Then we have the following equivalent statements: 

       ( ) 0k A− ⊗ = ⊗x x ⇔
11 1 1 1

1

0
n

n nn n

a k a k x x

a k a k x x

− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⊗⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

   ⇔

( )

( )

11 1 12 2 1 1

1 1 2 2

max , , ,

max , , ,

n n

n n nn n

a k x a k x a k x x

a k x a k x a k x xn

− + − + − + =⎧
⎪
⎨
⎪ − + − + − + =⎩

…

…
 

   ⇔

( )

( )

11 1 12 2 1 1

1 1 2 2

max , , ,

max , , ,

n n

n n nn n

k a x a x a x

k a x a x a x

− ⊗ + + + =⎧
⎪
⎨
⎪ − ⊗ + + + =⎩

…

… n

x

x
 

   ⇔

( )

( )

11 1 12 2 1 1

1 1 2 2

max , , ,

max , , ,

n n

n n nn n

a x a x a x k x

a x a x a x k x

+ + + = ⊗⎧
⎪
⎨
⎪

n+ + + =⎩

…

… ⊗

 

   ⇔ A k= ⊗x x  
 
b) Let ( )A mμ =  and let B m= − ⊗ A .  Then the weight of any arc in BD  has been 

decreased by m from the corresponding arc in A, i.e. ij ijb a m= − .  Let the cycle 

*, ia: , ,A ij jka aσ …  have the maximum cycle mean in A with length .  Then  

*( ) ij jk ia a a
A mμ

+ + +
= = . 

Let *: , , ,B ij jkb b b iσ …  be the same cycle taken, only taken from B, so then  

*

*

*

( )

( ) ( ) (

( )
0 .

ij jk i

ij jk i

ij jk i

b b b
B

a m a m a m

a a a mk

A m

μ

μ

)

+ +
=

− + − + + −
=

+ + −
=

= −
= ■
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Theorem 1.3.3: Let A be an n n×  matrix with at least one cycle.  Then there 
exists an eigenpair ( , )λ x  for A where λ  is finite. 

 
Proof: 

 Without loss of generality, by Lemma 1.3.2, we may assume A has a maximum cycle 

mean of 0.  It will be sufficient to show that A has eigenvalue 0.  Let  be the digraph 

for A and let  be the vector whose entry is the largest weight of a path in  that 

starts at i .  If there is no path in  that starts at i , then 

AD

x thi AD

AD ix = −∞ .  The entry of th j A x  

is .   ( )max jkk
a xk+

 Consider .    Suppose jk ka x+ jka = −∞ , then jk k ja x x+ = −∞ ≤ .  Suppose , 

i.e. there is an arc from j to k.  Let 
jka ≠ −∞

α  be a path that starts at k with largest weight, kx .    
 

j k
α 

 
 
Let ,j kα α′ = → .  α′  may contain a cycle (α  could pass through vertex j), but then α′  

can be decomposed into a path that starts at j and a cycle.  Since each cycle has non-

positive mean, α′  has weight at most jx .  Hence, jk k ja x x+ ≤ .  Therefore, we’ve shown 

that ma .  ( )x jk ka x+ j≤ x
k

 Now let β  be a path in  with largest weight, AD jx  that starts at j.  Then β  
is ,j m β ′→  for some vertex m and some path β ′  starting at m.   
 

j m

β ′

jma

β
 
 
 
 
So the weight of β  is ( ) ( )wt maxj jm jm m jk kk

x a a x aβ ′= + ≤ + ≤ +

) jx= x

x .  Thus, we now have 

that ma .  Therefore,  is an eigenvector of A corresponding to 

eigenvalue 0.   
(x jkk
a x

■
k+

 
  We now look at the eigenvalue for an irreducible matrix.  It is easy to verify that 
for an irreducible matrix, every vertex is the vertex of a cycle.  We have already shown 
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that if a matrix has a cycle, then the eigenvalue is finite.  Thus, an irreducible matrix must 
also have only finite eigenvalues. 
 

Theorem 1.3.4: Let A be an irreducible n n×  matrix.  Then ( )Aλ μ=  is the 
unique finite eigenvalue of A. 

 
Proof: 
Let A be an irreducible n  matrix with entries in  and  be the digraph for A. 
Let (  be an eigenpair of A with 

n× max AD

),λ x λ  finite, then this eigenpair satisfies the equation 
A λ= ⊗x

x
x .  We first argue that all the entries of  are finite.  Suppose there are entries 

of  which are .  We can renumber the variables to get  in the form 
x

−∞ x
1

k

x

x

−∞

−∞

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

x  where 1, , kx x…  are finite, and there are  entries of . −∞

Then by examining the equation A λ= ⊗x x , we see that A must have the form 

A −∞ −∞

−∞ −∞

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟ , where the block of 's−∞  is k×  and . k n+ =

If A is irreducible, then we should be able to find a path from j to i.  But if we begin at a 

vertex with index greater than k, there are only arcs to other vertices with index also 

greater than k.  Thus, this is a contradiction, so A is not irreducible.  Therefore all the 

entries of x  must be finite. 
   
  Now we return to the equation A λ= ⊗x x , which we can express as 

11 12 1 1 1

21 22 2 2 2

3 3

1 2 4 4

n

n

n n nn

a a a x x
a a a x x

x x
a a a x x

λ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⊗
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

   

or equivalently,  
( )
( )

( )

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

max , , ,

max , , ,

max , , ,

n n

n n

n n nn n

a x a x a x x

a x a x a x x

a x a x a x x

λ

λ

λ

+ + + = +⎧
⎪

n

+ + + =⎪
⎨
⎪
⎪

+

+ + + =⎩

…

…

… +

. 
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Consider an arbitrary cycle of length n≤  in .  Without loss of generality, by 

renumbering the vertices, let this be the cycle 
AD

: 1 2 kv v v 1vσ → → → →  or 

12 23 1: , , , ka a aσ …

12 23 1, , , ka a a ∈…
.  Note that necessarily, since  are arcs of , then 

.  We now consider the set of inequalities which is produced using 

only this cycle: 

12 23 1, , , ka a a… AD

 
12 2 1

23 3 2

1 1k n

a x x
a x x

a x x

λ
λ

λ

+ ≤ +⎧
⎪ + ≤ +⎪
⎨
⎪
⎪ + ≤ +⎩

 

 
If we take the sum of these inequalities, we now have the following result: 

12 23 1

12 23 1

( )

k

k

a a a
a a a

M

λ

λ

σ λ

+ + + ≤ ⋅
+ + +

≤

≤

 

Since we arbitrarily chose a cycle from A, we now conclude that ( )Aμ λ≤ . 

 

  Each row equation for A λ= ⊗x x , ( )1 1 2 2max , , ,i i i n na x a x a x xλ i+ + + =…

j ix

+ ,  

must achieve equality for some j, i.e. ija x λ+ = + .  Since A is strongly connected, and 

each vertex must have out-degree at least 1, each vertex must have a cycle.  This ensures 

that we will eventually form a cycle, σ , that is made up of equality conditions, yielding 

the following set of equations: 

* *

ij j i

jk k j

i i

a x x

a x x

a x x

λ

λ

λ

+ = +⎧
⎪

+ = +⎪
⎨
⎪
⎪ + = +⎩

 

Taking the sum of these equations, we conclude that  

* ( ) ( )ij jk ia a a
M A

σ

λ σ μ
+ + +

= = ≤ . 

Therefore, ( )Aλ μ= .  ■  
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It will be helpful to consider a numerical example.  In example 1.3a, we outline the 

process for finding the eigenvalue and eigenvector in great detail.  In example 1.3b, we 

give an example to illustrate the case that the digraph is not strongly connected. 

 

Example 1.3a: Finding the Eigenvalue and Eigenvector for an Irreducible Matrix 

 Let  with   
2
1 3

1 3
A

−∞ −∞⎛ ⎞
⎜ ⎟= −∞⎜ ⎟
⎜ ⎟−∞⎝ ⎠

:AD
1v 2v

3v

12

1 3
3

 

There are three cycles in A: 

 1 22: ( )aσ    1( ) 1/1 1M σ = =  

 2 23 32: ( , )a aσ   2( ) (3 3) / 2 3M σ = + =  

 3 12 23 31: ( , , )a a aσ   3( ) (2 3 1) / 3 2M σ = + + =  

Thus, ( ) 3Aλ μ= = . 

To find the eigenvector for 3λ = , we seek to solve 
2
1 3 3

1 3

−∞ −∞⎛ ⎞
⎜ ⎟−∞ =⎜ ⎟
⎜ ⎟−∞⎝ ⎠

x x⊗

2

3

. 

Or equivalently, 
2 1

2 3

1 2

max( , 2 , ) 3
max( , 1 , 3 ) 3
max(1 , 3 , ) 3

x x
x x x

x x x

−∞ + −∞ = +⎧
⎪ −∞ + + = +⎨
⎪ + + −∞ = +⎩

. 

Suppose , then it quickly follows that 1x = −∞ 2x  and 3x  also equal −∞ .  Since the 

eigenvector must have at least one entry not equal to −∞ , this cannot be.  Thus, we let 

 (recall that eigenvectors are only unique up to max-plus scalar multiples, so we 

can now let 

1 0x =

1x  be any finite value), which results in the following set of equations. 

   
2

2 3

2 3

max( , 2 , ) 3
max( , 1 , 3 ) 3
max(1, 3 , ) 3

x

2x x x
x x

−∞ + −∞ =⎧
⎪ −∞ + + = +⎨
⎪ + −∞ = +⎩

 

Further, we find that , and reduce the system to two equations: 2 1x =
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   3

3

max( , 2 , 3 ) 4
max(1, 4, ) 3

x
x

−∞ + =⎧
⎨ −∞ = +⎩

 

This can be solved for 3x , yielding 3 1x = . 

Thus, we have that for 3λ =

∈

, the eigenvector  can be any  of the form 

, where c .  ■  

x x

(0,1,1)Tc= ⊗x

 

Example 1.3b: Matrix with Multiple Eigenvalues 

  Let  with  
2 3
5 1

2
A

−∞⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−∞ −∞⎝ ⎠

∞ :AD

 

 This matrix has two eigenvalues, 4λ =  with eigenvector ( )4 0 1 T
λ= = −∞x and 

2λ =  with eigenvector .  ■  ( )0 T−∞2λ= = −∞x

1v 2v

3v

2 1
5

2

3

 

In Example 1.3a, we find only one eigenvector.  We can follow up on this by proving 

that, in fact, in certain instances, this eigenvector is essentially unique. 

 

Theorem 1.3.5: Let A be an irreducible n n×  matrix with eigenpair .  If 
the critical graph of A is strongly connected, then the  is unique (up to max-
plus scalar multiples). 

( ,λ x)
x

  

 

Proof: 

 Let A be an irreducible n  matrix such that the critical digraph D of A is strongly 

connected.  Let  and 

n×

x y  be eigenvectors of A corresponding to ( )Aλ μ= .  Since A is 

irreducible, all entries of  and x y  are finite.  By using max-plus scaling, we may assume 

that .  We show x1 1 0x y= = = y .  Let j be any vertex.  Since D is strongly connected, 

there exists a path in D from  to i j : 1 2 3 ki i i i i j= → → → → = .  Since each arc of D 

lies on a cycle of mean ( )Aμ , 
1 1i ia x x,i i λ
+ +
+ = + ,i ia y and 

1 1i iyλ
+ +
+ = + .  Hence 

 23



 24

i1 1i i ix x y y
+ +
− = − −

1
 (*) for … .  As 1, , 1k=

1
,i ix y=  (*) implies i ix y= .  Therefore 

=x y .  ■

3 2
∞

 

Example 1.3c: Irreducible Matrix with Multiple Eigenvectors 

 Let A = −  with   3
1 3

−∞
−∞

−∞

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

:AD

3

 

 

This matrix has one eigenvalue, λ = .  Since the critical 

graph is not strongly connected (see digraph to right), we 

expect the possibility of more than one eigenvector. In 

particular, the eigenvectors for 3λ =  are  and (0 1 1 T)1 =x

{ }2 (0 ) :Td d d∈ ≤x

n×

1 . ■  

 

  The most difficult step in calculating the eigenvalue and eigenvectors for an 

irreducible n  matrix, A, is the calculation of ( )Aμ .  Efficient algorithms have been 

developed for computing ( )Aμ , including an algorithm with computational complexity 

, which can be found in [6]. 3( )O n

1v

3v

2v3 2

1 3
3

1v 2v

3v

3

3
3



Chapter 2: Applications 
 
2.1 Shortest Route Problem 
 
  Consider a weighted digraph, a system of vertices connected by a collection of 
(directed) weighted arcs.  The arc weight may represent any quantity associated with that 
arc such as a physical length, time, cost, etc.  When examining such a labeling, one goal 
is to find the shortest, i.e. the most efficient, path from one vertex to another.  
 
  This problem can be formulated and solved using the min-plus algebra.  Recall 
that in this algebra, ⊕  represents the operation of finding a minimum and  is the 
additive identity.  We can use a matrix, X, to represent this digraph, where each entry 

∞

ijx  
represents the smallest arc weight from i  to j .  If there is more than one arc between  
and 

i
j , then for the purposes of the shortest route problem, we simply choose the weight 

of the shortest arc for the entry in the matrix.  Note that ijx  is not necessarily the same as 

jix .  If there is no path from  to i j , then we assign the value of ijx = ∞ . 
 
Example:  Quickest traffic route 
Consider the following map (a digraph) of a road system during rush hour, where the 
vertices represent road intersections and the weight of each arc actually represents the 
average time it takes to drive that arc.  Notice that most arcs have different times 
depending on which direction you are driving, the road connecting B and D is unaffected 
by the rush hour traffic, and the road from A to E is one-way.  We would like to find the 
shortest driving time between any two intersections. 
 

 :       3XXD

2 2 8
3 2 3

1 2
3 1 2

1

∞ ∞⎛ ⎞
⎜ ⎟∞ ∞⎜ ⎟
⎜= ⎟∞ ∞
⎜ ⎟
∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞ ∞⎝ ⎠

 

 
 
The entries of X  show the shortest travel times between intersections for one-arc paths.  
If we examine the  entry of the matrix for ,i j 2X , it is 

A

B
C

D
E

1←⎯⎯

8⎯⎯→
2←⎯⎯

↑ 2↓3
2⎯⎯→

1←⎯⎯
2⎯⎯→

1←⎯⎯
2⎯⎯→

3⎯→

3←⎯⎯
3⎯⎯→

⎯
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( 1 1 2 2min , , ,i j i j in n )jx x x x x x+ + +… , which gives the shortest two-arc path from i  to j .   
Similarly, kX  holds the shortest driving times for k-arc paths between intersections.  
While searching for the shortest driving route between two intersections, we need only 
calculate up to 1nX − n n× for an  matrix.  In this case, we need to find 2 3, ,X X  and 4X , 
listed below.  
 

2

5 3 4 4
5 3 4 4 5
4 5 3 4 4
4 2 5 3

4 2 3

X

∞⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

∞⎜ ⎟
⎜ ⎟∞ ∞⎝ ⎠

3X = 

6 5 5 6 6
6 5 5 6 6
6 4 5 5 6
5 6 4 5 5
5 3 6 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∞⎝ ⎠

  4

6

X =

8 6 7
8 6 7
7 6 6
7 5 6 6

7

7
7
7

5 6 6

8
8
7
7

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
Now, to find the shortest driving route from  to i j , we need to find the minimum value 
of the  entry in the matrices 2 3, , ,X X  and 4X , i.e. we need to find the matrix ijx X

2 3 4*X X X X X= ⊕ ⊕ ⊕  
5 3 4 4 6
5 3 4 4 5

* 4 4 3 4 4
4 2 4 3 5
5 3 2 4 3

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
Thus, in the matrix *,X  the ijx  entry gives the driving time of the shortest path from 
vertex i to vertex j [4]. 
 

Min-Plus Solution to the Shortest Route Problem:  
For a graph with n vertices and matrix representation X (written in terms of 
min-plus algebra), let 2 1n*X X X X − .  Then the ij  of -entry *X= ⊕ ⊕ ⊕…  is 
the weight of the shortest route from vertex i  to vertex .j    
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2.2 The Project Scheduling Problem 
 
  A primary field of importance in Operations Research is that of project 
scheduling.  A complicated project is made up of many tasks that must be accomplished 
before the project is completed.  Some tasks may be carried out simultaneously and 
others have a precedence order.  In project scheduling, we are generally concerned with 
answering three questions: 

1. What is the minimum time in which the project can be completed? 
2. Which tasks are the most time-sensitive?  If there is a delay in this task, will it 

cause a delay in the overall production time?  If so, then it is considered a 
bottleneck.   

3. Which tasks are the least time-sensitive?  If a task is not a bottleneck, then 
there is some slack time during which delays can occur without disruption to 
the overall production.  For these tasks there will be a critical time, beyond 
which, delays in the overall production time will occur. 

  The Project Scheduling Problem has been discussed in other papers [4, 5]; here 
we present a slightly different formulation of this problem that we think is a little easier 
to understand. 
 
Example:  Production Line 
Six machines in a production line (A, B, C, D, E, and F) work together to produce a car 
part.  Note that when each machine has gone through its production cycle once, it might 
produce components that are sent to several other machines.  Consider the following task 
precedence diagram and machine cycle times: 
 
        A B

C D

E

F

Machine Time to complete 
cycle (in minutes) 

A 4 
B 3 
C 5 
D 2 
E 6 
F 1 
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Every arc in the diagram must be traveled in order for the part to be properly assembled, 
thus, the minimum time in which the car part can be completed is the time it takes to 
travel the longest path through the diagram.  This should be somewhat reminiscent of the 
shortest route problem except that we are searching for the maximum path, rather than 
the minimum path.  In order to designate machines with no predecessors and to include 
the last cycle in the part’s completion, it will be helpful to introduce a “Start” and “End” 
stage to our precedence tree.  We denote these the α  and ω  vertices respectively.  If a 
machine has no predecessors, then the arc weight from α  to one of these vertices is 0.  If 
machine X has a cycle completion time t, then all arcs leaving X should have a weight of 
t.  Thus, we can draw a new and more representative precedence diagram that includes all 
the cycle completion times (see below).    
 
 
 
 
 

      

0 0
4 4
3 3

5 5
2

6
1

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −⎜ ⎟
⎜ ⎟

A B

C D

E

F

α

ω

00

4

4 3 3

25

5

6

1

∞
−∞ −∞ −∞

⎜ ⎟
−∞

−∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −
⎜ ⎟

−∞ −∞⎜ ⎟
⎜ ⎟−∞
⎜ ⎟⎜ ⎟

∞

−∞⎝ ⎠

 

 
 
 
 
  Since the purpose of this problem is to find the maximum path weight through the 
diagram, we will formulate the matrix representation, X (shown above), in terms of max-
plus.  Thus, any arc that is not shown on the diagram will be assigned a weight of .  
Since the digraph has no cycles, the representation matrix can be taken to be upper 
triangular.  We have added partition lines to the matrix 

−∞

X  to make it easier to read for 
calculation purposes. 
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  Just like the solution to the shortest path problem, we need to calculate 
2* ... n 1X X X X += ⊕ ⊕ ⊕  to find the longest path for this problem, where n is the number 

of machines (remember that we added two extra vertices to the diagram).  To answer the 
question of the minimum time to produce the car part, we will really only be concerned 
with the *xαω  entry, which will give us the maximum path weight from α  (start) to ω  
(end).  The matrices 2 3, , ,... 7X X X X  and *X  are given below.   
 

0 0
4 4
3 3

5 5
2

6
1

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞
⎜ ⎟

−∞ −∞⎜ ⎟
⎜ ⎟−∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

   2

4 3 4
9 9 5
8 8

11 6
8

7

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞
⎜ ⎟

−∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

 

 
 

3

9 9 5
15 10
14 9

12
9

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

  4

15 10
16
15

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

 

 

5

16
A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

 ( )6 7,X X = −∞  
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0 0 4 3 9 15
4 9 15 16
3 3 8 14 15

5 11 12
*

2 8 9
6 7

1

A
B
C

X
D
E
F

α

ω

−∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞
⎜ ⎟

−∞ −∞⎜ ⎟= ⎜ ⎟−∞
⎜ ⎟

−∞⎜ ⎟
⎜ ⎟−∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

16

    
*The bold entry, ,  denotes the

shortest production time for the part.
xαω

 
From the *xαω  entry, we can see that the longest path from start to finish for the 
production process takes 16 minutes to complete.  We cannot produce the part in any 
smaller time frame since every arc in the graph must be traveled. 
 
There were two other questions concerning time-sensitivity that we wished to answer.  To 
answer these, we need to calculate the longest path through each machine and then use 
this to calculate the available slack time for each machine.  The longest path weight that 
contains machine  is given by the sum of the longest path from “Start” to  and the 
longest path from  to “End”, or the expression 

i
i

i
*

i i
*x xα ω⊗

*
i iv x

.  Thus we can find a vector of 
longest paths through each machine, , where v *

ixα ω= ⊗ .  We then define a slack 
vector, s , which is the minimum overall production time less the longest path through 
each machine, where . *

i is x vαω= −
 

0 16 16
0 15 15
4 12 16
3 9 12
9 7 16
15 1 16

+⎛ ⎞ ⎛
⎜ ⎟ ⎜+⎜ ⎟ ⎜
⎜ ⎟ ⎜+

= =⎜ ⎟ ⎜
+⎜ ⎟ ⎜

⎜ ⎟ ⎜+
⎜ ⎟ ⎜⎜ ⎟ ⎜+⎝ ⎠ ⎝

v

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

16 16 0
16 15 1
16 16 0
16 12 4
16 16 0
16 16 0

−⎛ ⎞ ⎛
⎜ ⎟ ⎜−⎜ ⎟ ⎜
⎜ ⎟ ⎜−

= =⎜ ⎟ ⎜
−⎜ ⎟ ⎜

⎜ ⎟ ⎜−
⎜ ⎟ ⎜⎜ ⎟ ⎜−⎝ ⎠ ⎝

s   

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

A
B
C
D
E
F

 

 

  For the purposes of this paper, we will define a bottleneck as any machine (or 
task) for which the slack is zero.  Any delay at a machine that is a bottleneck will cause 
the overall production process to be delayed as well.  For this problem, machines A, C, E, 
and F are bottlenecks.  The least time-sensitive machines are those with large slack values 
– in this case, machine D has four minutes of slack.  However, even those machines with 
slack time have critical start times.  The longest path from machine D to completion 
requires 9 minutes (this is the value of *

Dx ω ).  If the production process starts at time zero, 
then short delays (less than four minutes) at machine D can only occur in the first seven 
minutes of the production run without causing on overall production delay.  We will 
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define the critical time to be the time after which any delay in this particular task will 
delay the overall process.  The critical time for each machine, , is simply the overall 
minimum production time less the longest route from i  to “End”, or 

ic
* *

i ic x xαω ω= − . 
 

16 16 0
16 15 1
16 12 4
16 9 7
16 7 9
16 1 15

−⎛ ⎞ ⎛
⎜ ⎟ ⎜−⎜ ⎟ ⎜
⎜ ⎟ ⎜−

= =⎜ ⎟ ⎜
−⎜ ⎟ ⎜

⎜ ⎟ ⎜−
⎜ ⎟ ⎜⎜ ⎟ ⎜−⎝ ⎠ ⎝

c

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

  

A
B
C
D
E
F

 

 
Max-Plus Solution to the Project Scheduling Problem:  
1. Formulate a new precedence diagram for the project with new vertices for 

α  and ω .  For any task i  that has no predecessors, then assign a 
directional arc from α  to i  with weight zero.  For any task j  that has no 
successors, then assign a directional arc from j  to ω  with weight equal 
to the completion time of task j .  Then, for any other non-terminating 
task k , assign all arcs leaving k a weight equal to the completion time of 
task k. 

2. Write the Max-plus matrix representation, X , for the graph where the i jx  
entry is the arc length from task i  to task j .  If there is no arc connecting 
i  and j , then the i jx  entry will be −∞ .  If the vertices are labeled 
appropriately, X  should be upper triangular with all diagonal entries 
equal to −∞ . 

3. Find 2 1nX X X +X* = ⊕ ⊕ ⊕ , where n is the number of vertices before  
the α  and ω  vertices were added. 

4. The shortest overall completion time for the project is *xαω . 
5. Find the longest route vector ( v ), the slack vector (s ), and the critical 

time vector (c ).   These are all 1n×  vectors, they do not include the α    
or ω  vertices. 

*
i iv x x*

iα ω= ⊗         *
i is x vαω= −       * *

i ic x xαω ω= −  

6. The bottlenecks are the tasks with slack time equal to zero ( 0is = ).  If 
the slack time for task i  is greater than zero, then there can be delays in 
this task of time is≤  that will not effect the overall completion time as 
long as the delays occur before the critical time, ic .   
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2.3 Synchronized Events Problem 
 
 The Synchronized Event Problem is similar to the Project Scheduling Problem in 
that we want to schedule events to meet some deadline.  However, the twist is that 1) the 
events run simultaneously (instead of sequentially) and 2) we want the completion of the 
longest event to occur exactly at the deadline.  This type of situation will often occur with 
very time-sensitive deadlines.  For example, the coordination of system checks for a 
Space Shuttle Launch, the preparation of a plane for a set takeoff time, or the preparation 
of an athlete before an Olympic event.   
 If we are only coordinating the events of a single deadline, then we can find the 
latest start times by simply taking the difference of the finish time and individual event 
duration times.  For example, when an unloaded plane is brought to its new gate, it will 
need refueling, maintenance, food service, and luggage service.  Suppose these events 
require times of 20 min, 30 min, 15 min, and 15 min, respectively, and that the plane is 
supposed to taxi to the runway in 45 minutes.  Then taking the difference shows that the 
latest starting time for each event is as follows: refueling, 25 min; maintenance, 15 min; 
food service, 30 min; and luggage service, 30 min. 
 When we need to coordinate similar events for multiple deadlines, then we will 
only be concerned with timing the maximum event duration with the deadline.  For 
example, consider the case where we now have three planes that arrive at their new gates 
(A, B, and C) ready for pre-flight preparation.  Each plane has different time requirements 
for refueling and food service (related to the mileage of the next trip), maintenance 
(depending on whether there were problems on a previous flight or the age of the plane), 
and luggage service (related to both the mileage of the next trip and the number of 
passengers on the flight).  When on of the pre-flight maintenance teams is sent out, they 
service all three planes at once (we assume here that there are enough people on each 
maintenance team to accomplish this).  The pre-flight preparation matrix is shown below 
(event times are in minutes). 
 

    
25 10 35 15 Gate 1
15 45 15 20 Gate 2
25 15 20 15 Gate 3

R M F L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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Note that in this case, it is in the best interest of the airport to load the food and luggage 
as late as possible.  Latest possible loading will ensure that the food will require the least 
on-board refrigeration time.  Likewise, latest loading of luggage will ensure that the 
greatest amount of passenger luggage will reach the plane before it leaves the airport.  
 
Example 2.3a: Departure times of  1 45d = , 2 50d = , 3 55d =  minutes 

We want to find the latest starting times for the procedures R, M, F, and L so that the last 
procedure is completed at the departure time of the plane.  This problem can be 
formulated as the following max-plus matrix equation, where we want to solve for : t
 

1

2

3

4

25 10 35 15 45
15 45 15 20 50
25 15 20 15 55

t
t
t
t

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

We can quickly find the discrepancy matrix, , the reduced discrepancy matrix, aD aR , 
and the candidate solution,  (as discussed in 1.3). *t
 

        a

20 35 10 30
35 5 35 30
30 40 35 40

D
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

a

1 0 1 1
0 1 0 1
0 0 0 0

R
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

20
5

10
30

⎛ ⎞
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

t

 
From aR , we can tell by the all-zero row that there will be no solution to the problem that 
has been posed.  Indeed we can verify this by trying ′t  as a possible solution:  
 

20
25 10 35 15 45

5
15 45 15 20 50

10
25 15 20 15

30

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠
45

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

he bold entry is the one that 
causes the solution to fail.

   T  

 
Although  does not represent a strict solution to the matrix equation, it does not result 
in a delay of deadline.  That is, the plane at Gate 3 will be ready too soon rather than too 
late.  When the candidate solution is not a strict solution to the matrix equation, but it 
does not result in a delay of any of the deadline, we will refer to this as a non-ideal 
solution. 

′t
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Example 2.3b: Departure times of  1 50d = , 2 55d = , 3 45d =  minutes 

The control tower decides to reschedule the takeoff times of the three planes due to the 
extensive maintenance requirements of the plane at the second gate.  This results in the 
following matrix equation, discrepancy matrices, and candidate solution. 
 

1

2

3

4

25 10 35 15 50
15 45 15 20 55
25 15 20 15 45

t
t
t
t

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

b

25 40 15 35
40 10 40 35
20 30 25 30

D
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

       a

0 0 1 0
0 1 0 0
1 1 0 1

R
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

20
10
15
30

⎛ ⎞
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

t

From the reduced discrepancy matrix we can see that the candidate solution, , is a 
solution to the matrix equation.  In this example, the start times for maintenance and food 
service are fixed entries (lone-ones in the second and third column of 

′t

aR ).  The start 
times for refueling and luggage could be earlier without affecting the strict solution.  
Notice that the presence of so many ones in the third row of aR  indicates that for the 
plane at Gate 3, most of the pre-flight procedures (all but food service) are timed to end 
simultaneously.   
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2.4 Airport Problem 
 

In section 1.3, we discussed various results involving the eigenvalue and 
eigenvector for an irreducible matrix.  Before we present an application of the eigenvalue 
and eigenvector, one might ask what kind of meaning the eigenvalue has in a given 
problem.  Thus, we first need to prove the following theorem.   
 

Theorem 2.4.1:  Let  be an irreducible [ ]ijA a= n n×  max-plus matrix.  

Then 
* ,

( ) min m )ii j
A xax( ij ja xμ = +

x
− , where  is the set of all non-*x

negative  vectors. 1n×

 
Proof: 

Since A is irreducible, A has eigenvalue ( )Aμ  and an eigenvector  with finite 

entries.  We may scale  so that every entry is non-negative.  Thus, 

x

x

ixmax( ) ( )ij jj
a x Aμ+ = +  for all  and i ( )

,
max( )ij ii j

x Aμ=

)x x
ja x+ − .  Now let , then 

certainly 

*∈xx

*
( ) minA

,
ma

i j
x( ij jiaμ ≥ + −

x
.   

Let .Then for any , 
,

max( )ij j ii j
m a x= + − x ),i j ( ij j im a x x≤ + − .  Now consider a 

cycle 1 2 1i i i i:σ → → → →…  in  with cycle length .  Using this cycle, we have the 

following system of inequalities: 
AD

1 2 2 1

2 3 3 2

1 1

i i i i

i i i i

i i i i

a x x m

a x x

a x x m

m

+ − ≤

+ − ≤

+ − ≤

 

Taking the sum of these inequalities gives  
1 2 2 3 1

1 2 2 3 1

( )

i i i i i i

i i i i i i

a a a

a a a
m

M mσ

m+ + + ≤ ⋅

+ + +
≤

≤

 

Since ( )M mσ ≤  for an arbitrary cycle σ , then ( )A mμ ≤ .  Thus 

* ,
min max

i j
A( ) ( )ij i ja x xμ ≤

x
+ − .  ■  
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Example:  Airport Problem 

Consider an airline company that manages three rural airports, E, F, and G.  Each 
airport can send flights to or receive flights from the other two airports.  An airport may 
also send and receive the same flight.  We let A be the 3 3×  matrix where the  entry 
represents the flight time for the flight from 

ija
j  to  (note that this is the transpose of how 

we would normally set up the matrix representation).  If there is no flight from 
i

j  to , 
then .  We define the eigenvector x  as the vector where 

i

ija = −∞ ix  is the time when 
airport i  will open. 
 E F

G

4

14

3 2
2

2

3         
14 3

2 4 2
3 2

A
−∞⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−∞⎝ ⎠

:AD

 
In terms of this problem, we summarize the meaning of individual terms: 
 

x  The vector that contains the airport opening 
schedule. 

ij j ia x x+ −  The time after  opens that the plane from i j  
arrives at i . 

(
,

max ij j ii j
a x x+ − )  The maximum time an airport needs to be open 

given the schedule x . 

(
* ,

min max ij j ii j
a x x+ −

x
)  

The shortest equal time period that all the 
airports would need to be open given any 
possible non-negative schedule x . ( λ= ) 

 
Thus, for this problem, the eigenvalue corresponds to the minimum equal time period that 
all the airports must remain open to ensure that all the planes take off and land 
appropriately.   

Let’s find the eigenvalue and an eigenvector for the matrix A.  There are six 
cycles in . AD
 1 : F Fσ →      1( ) 4 /1 4M σ = =  
 2 : E F Eσ → →   2( ) (14 2) / 2 8M σ = + =  
 3 : F G Fσ → →   3( ) (2 2) / 2 2M σ = + =  
 4 : G E Gσ → →   4( ) (3 3) / 2 3M σ = + =  
 5 : E F G Eσ → → →  5( ) (3 2 2) / 3 7 / 3M σ = + + =  
 6 : E G F Eσ → → →  6( ) (14 2 3) / 3 19 / 3M σ = + + =  
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We seek an eigenpair (  such that )8, x 8A = ⊗x x . 

 

1 1

2 2

3 3

14 3
2 4 2 8
3 2

x x
x x
x x

−∞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⊗⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−∞⎝ ⎠⎝ ⎠

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

 ⇔   
( )
( )
( )

2 3

1 2 3

1 2 3

max , 14 , 3 8

max 2 , 4 , 2 8

max 3 , 2 , 8

1

2

x x x

x x x x

x x x

−∞ + + = +⎧
⎪

+ + + = +⎨
⎪ + + −∞ = +⎩

 

 

Let .  Then the system becomes 1 0x =

( )
( )
( )

2 3

2 3

2 3

max , 14 , 3 8

max 2, 4 , 2 8

max 3, 2 , 8

x x

2x x x

x x

−∞ + + =⎧
⎪

+ + = +⎨
⎪ + −∞ = +⎩

. 

 
Solving for the remaining components, we have 2 6x = −  or 3 5x = − . 

 
This gives the eigenvector . We scale the eigenvector so that the 

smallest entry is zero to keep from having to use negative times.  We can use the max-
plus scalar multiple, , to give us an equivalent eigenvector .  The 
diagram below shows the time period in which each airport will be open, where each 
airport will be open for 8 hours. 

( 0 6 5)T= − −x

6⊗x (6 0 1)T=x

 

:E

:F

:G

time: 0   1   2   3   4   5   6   7   8  9  10  11  12  13  14
 
 
 
 
 
 Note that this schedule does not take into account the possible closings and 

openings of airports within the 8-hour stretch.  It only gives a schedule for when the 

earliest opening and the latest closing occur.  Also, we assume that the airport schedules 

are dependent on flight scheduling and not vice versa. 
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Conclusion 
 
  In this paper, we have seen that many characteristics of the max-plus algebraic 
structure are similar to those in more familiar mathematical structures.  We can use 
matrix operations, solve systems of max-plus equations, and have existence and meaning 
for eigenvalues and eigenvectors.   
  Through applications, we have seen that max-plus and min-plus provide  
interesting tools that can be used to formulate and solve many problems of optimization.  
There are numerous applications of max-plus, and they are certainly not limited to those 
presented in this paper.  We have tried to present the topic in an understandable and 
reader-friendly way and encourage the reader to seek out new applications of the max-
plus algebra. 
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Appendix: The Minimum Spanning Tree Problem 
 
  Given an undirected graph with weighted edges, a spanning tree is a set of edges 
that include every vertex on the graph.  A minimum spanning tree (MST) is a spanning 
tree with the smallest total edge length.  For example, in a communications network, we 
often want to find the most efficient way to connect several locations.  For illustration, a 
minimum spanning tree for the graph below has been marked with solid lines. 
 

A

C

D

E

B

F

5
2

1

4

3

2

3

2 
 
 
 
 
  There are several algorithmic procedures that may be used to find the minimum 
spanning tree for a given problem.  Here we present Prim’s algorithm [8], which always 
results in a minimum spanning tree.  Begin at any vertex of the graph and find the 
shortest edge out of that vertex (this is the first vertex in the MST).  Then find the 
shortest edge out of either of the vertices in the MST that goes to an unincluded vertex.  
Add this edge and vertex to the tree.  Again, find the shortest edge out of any of the 
included vertices in the MST that goes to an unincluded vertex.  Add this edge and vertex 
to the tree.  Repeat this process until all the vertices have been included in the minimum 
spanning tree.  It is important to understand the algorithmic approach on a graph before 
we present the min-plus procedure, so we have outlined the use of Prim’s algorithm for 
finding the MST of the above graph in the following table. 
 

 
 
 
 
 

The original graph.  Choose a vertex to 
begin with, in this example, we begin with 
vertex A. 

 
 
 
 
 

The shortest edge out of vertex A is path 
 with length 3.  So we choose this edge 

to begin the MST. 

A

C

D

E

B

F

5
2

1

4

3

2

3

2

AE

B C

 

A D

E F

5
2

1

4

3
2

3

2

 40



 
 
 
 
 
 

Now we look for the shortest edge out of 
either A or E that will connect to B, C, D, 
or F.  There are two candidates,  or 

.  Either will work; we include EB . 
EB

EF

 
 
 
 
 

Now we look for the shortest edge out of 
either A, E, or B that will connect to C, D, 
or F.  We choose edge 

A

C

D

E

B

F

5
2

1

4

3
2

3

2

BC , which has a 
length of 1. 

 
 
 
 
 

Now we look for the shortest edge out of 
either A, E, B, or C that will connect to D 
or F.  There are two candidate edges of 
length 2, CD  and EF .  We include CD . 

 
 
 
 
 

Finally, we have only one more vertex to 
include, vertex F.  The shortest edge to F 
from the MST-in-progress is .  This 
completes the minimum spanning tree. 

A

C

D

E

B

F

5
2

1

4

3
2

3

2

A

C

D

E

B

F

5
2

1

4

3
2

3

2

EF
A

C

D

E

B

F

5
2

1

4

3

2

3

2

 

The procedure is not difficult, but it can be quite difficult to ensure that you have 
considered all the possible edges to non-included vertices as the number of vertices on 
the graph increases.  For this reason, we present a methodical and quick approach to 
finding the minimum spanning tree using the min-plus algebra.  Please note that in 
problems where we seek to find a minimum spanning tree for a graph, it is necessary that 
edges include both directions equally, that is ij jix x=  for all i .  In addition, when we 
write the matrix representation for the graph, X, we do not include arcs that are loops 
since these would never be considered in the MST.  Thus, the 

, j

iix  entries will always be 
 entries.  Likewise, if i  and ∞ j  are not connected by an edge, then .  ij jix x= = ∞
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5 3
1 2

5 1 2 3
2 4

3 2 4 2
3 2

A
B
C

X
D
E
F

∞ ∞ ∞ ∞⎛ ⎞
⎜ ⎟∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞

= ⎜ ⎟
∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞
⎜ ⎟⎜ ⎟∞ ∞ ∞ ∞⎝ ⎠

 

 
We now outline a min-plus algorithm, similar to Prim’s algorithm, for finding the 

minimum spanning tree given the min-plus MST matrix representation of the graph. 

 
Min-Plus Solution to find the Minimum Spanning Tree:  
Choose a row, , to begin the process.   i
Mark the row and column as included (using 1’s). thi thi
Repeat the following three steps until all the rows and columns are marked  
as included. 
1. Choose (circle) an entry, jkx , that remains in one of the included rows, 

which is equal to the minimum value of all the entries in the included 
rows.  Also circle the kjx  entry. 

2. The thj  row and column will already be marked as included.  Now mark 
the thk row and column as included (using 1’s). 

3. Cross out (using X) any entry that is the intersection entry of an included 
row and column. 

The circled entries of the matrix X give the arcs that are included in the 
minimum spanning tree.  Note that a given graph may have more than one 
minimum spanning tree. 
  

 
In the min-plus algorithm, we mark rows and columns as “included” so that we keep a 

record of which vertices have already been included in the minimum spanning tree.  Once 

a new vertex has been included, we no longer need to consider any edges that connect the 

new vertex to any of the included vertices.  Thus, the included row / column intersections 

are removed (crossed out) at the end of each repetition. Although all the work to find the 

MST using the min-plus algorithm can be done on a single copy of the matrix X, we will 

show the procedure step by step through to completion on separate matrices. 
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Example:  Finding the Minimum Spanning Tree using the Min-plus Solution 
 

We will find the MST for 

5 3
1 2

5 1 2 3
2 4

3 2 4 2
3 2

A
B
C

X
D
E
F

∞ ∞ ∞ ∞⎛ ⎞
⎜ ⎟∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞

= ⎜ ⎟
∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞
⎜ ⎟⎜ ⎟∞ ∞ ∞ ∞⎝ ⎠

.  The procedure follows. 

 

We begin with the arbitrary choice of row 1 
and mark the 1st row and 1st column as 
included. 

1
1 5 3

1 2
5 1 2 3

2 4
3 2 4 2

3 2

X

∞ ∞ ∞ ∞
∞ ∞ ∞

= ∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞

∞ ∞ ∞ ∞

 

Now we circle a minimum entry in the 
included rows (in this step, the only 
included row is the first one).  The 
minimum entry of row 1 is 15x , so we 
circle this entry and the 

 

51x  entry and mark 
the 5th row and column as included. 

1 1
1 5 3

1 2
5 1 2 3

2 4
1 3 2 4 2

3 2

X

∞ ∞ ∞ ∞
∞ ∞ ∞

= ∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞

∞ ∞ ∞ ∞

 

Before we repeat the process, we need to 
cross out any new intersection entries, in 
this case, they are 11x  and 55x . 

1 1
1

X

∞

=

5 3
1 2

5 1 2 3
2 4

1 3 2 4

∞ ∞ ∞
∞ ∞ ∞

∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞
2

3 2∞ ∞ ∞ ∞

 
Now we find a new minimum entry in the 
included rows (row 1 and row 5).  Row 5 
contains two minimum entries of 2.  
Arbitrarily, we choose one of these, 52x .  
Thus we circle 52x  and 25x  and mark the 
2nd row and column as included. 

1 1 1
1

X

∞

=

5 3
1 1 2

5 1 2 3
2 4

1 3 2 4

∞ ∞ ∞
∞ ∞ ∞

∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞
2

3 2∞ ∞ ∞ ∞
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12 21, ,
Now we cross out the new intersection 
entries, x x 22 and x . 

 

We find a new minimum entry in the 
included rows (rows 1, 2, and 5), circling 

23x  and 32x .  We mark the 3rd row and 
column as included and then cross out the 
new intersection entries, 31 13 33 35, , ,

1 1 1
1

X

∞

=

∞ 5 3
1

∞ ∞
∞ ∞ 1 2
5 1 2 3

2 4
1 3 2 4

∞ ∞
∞ ∞

∞ ∞ ∞ ∞
∞ ∞ 2
3 2∞ ∞ ∞ ∞

 

,x x x x  
and 53.x  

1 1 1 1
1

X

∞

=

∞ 5 3
1

∞ ∞
∞ ∞ 1 2

1 5
∞ ∞

1 ∞ 2 ∞ 3
2 4

1 3 2
∞ ∞ ∞

∞
∞

4 ∞ 2
3 2∞ ∞ ∞ ∞

 We find the new minimum entry in the 
included rows (rows 1, 2, 3, and 5), 
arbitrarily choosing 34x  ( 56x  would have 
also been an acceptable choice).  Entries 

34x  and 43x  are circled and the 4th row and 
column are marked as included.  The new 
intersection entries are crossed out. 

1 1 1 1 1
1

X

∞

=

∞ 5 ∞ 3
1

∞
∞ ∞ 1 ∞ 2

1 5
∞

1 ∞ 2 ∞ 3
1 ∞ ∞ 2 ∞ 4
1 3 2

∞
∞ 4 ∞ 2
3 2∞ ∞ ∞ ∞

 
This must be the last step since there was 
only one unincluded column/row at the end 
of the previous step.  The last choice for a 
minimum entry in an included row is 56x .  
Thus 56x  and 65x  are circled and the 
remaining uncircled entries are crossed out. 

1 1 1 1 1 1
1

X

∞

=

∞ 5 ∞ 3 ∞
1 ∞ ∞ 1 ∞ 2 ∞
1 5 1 ∞ 2 ∞ 3
1 ∞ ∞ 2 ∞ 4 ∞
1 3 2 ∞ 4 ∞ 2
1 ∞ ∞ 3 ∞ 2 ∞

This gives us the minimum spanning tree 
for the graph with matrix X . 

3
1 2

1 2
2

3 2 2
2

XMST

∞ ∞ ∞ ∞ ∞⎛ ⎞
⎜ ⎟∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞

= ⎜ ⎟
∞

∞ ∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞
⎜ ⎟⎜ ⎟∞ ∞ ∞ ∞ ∞⎝ ⎠
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