
Table of Contents

Introduction 1

Chapter 1: The Max-Plus Algebra

1.1 Basic Properties of Max-Plus 2

1.2 Solving Systems of Equations 7

1.3 Eigenvalues and Eigenvectors 15

Chapter 2: Applications

2.1 Shortest Route Problem 25

2.2 Project Scheduling 27

2.3 Synchronized Events 32

2.4 Airport Problem 35

Conclusion 38

References 39

Appendix: Minimum Spanning Tree Problem 40

MAX-PLUS ALGEBRA:

PROPERTIES AND APPLICATIONS
by Maria H. Andersen

A thesis submitted to the Department of Mathematics in partial fulfillment of the

requirements for the degree of MASTER OF SCIENCE in MATHEMATICS.

Laramie, WY

May 2002

Introduction

 The goal of this paper is to describe a mathematical theory, called the max-plus
algebra, which affords a uniform treatment of many problems that arise in the field of
Operations Research. We illustrate several applications of this theory with detailed
examples from transportation networking, project scheduling, and communications.
 The field of Operations Research emerged in the 1950s as a scientific approach to
decision making. Most problems in Operations Research involve a “search for
optimality.” The max-plus algebra uses the operation of taking a maximum, thus making
it an ideal candidate for mathematically describing problems in operations research.
Most often, problems in Operations Research have been solved by the development of
algorithmic procedures that lead to optimal solutions.
 The max-plus algebra emerged in the late 1950s, soon after the field of Operations
Research began to develop. This algebraic structure is a semi-ring whose elements are
the usual real numbers along with −∞ , where the operator of addition, ⊕ , represents
taking a maximum and the operator of multiplication, ⊗ , represents standard addition.
Because there is no additive inverse in the max-plus algebra, problem formulation and
solutions require different techniques. Although many individuals have researched
possible uses and theories regarding max-plus, the first attempt of a complete study,
Minimax Algebra, by Cuninghame-Green, was not published until 1979 [4]. Many of
these initial studies were limited to what are now called path algebras. More recently, the
usage of max-plus has been extended to consider Discrete Event Systems and Dynamic
Programming [5].
 In most of the literature, the basic properties, theorems, and proofs regarding
max-plus have become buried in references. Applications of max-plus, although
mentioned in the literature, are not usually demonstrated. In this paper, we present the
basics properties of max-plus and min-plus, including how to solve systems of max-plus
equations, and the properties of max-plus eigenvalues and eigenvectors for irreducible
matrices. We then follow up these properties and theorems with applications that
motivate the theory, including the shortest route problem, project scheduling, the
synchronized event problem, and an airport scheduling problem. In the appendix, there is
also a discussion of how the minimum spanning tree problem can be written in terms of
min-plus. While max-plus is not necessary to formulate solutions to these applications
problems, it is certainly interesting that they can all be formulated and solved using the
max-plus (or min-plus) algebra.

 1

Chapter 1: The Max-Plus Algebra

1.1 Basic Properties of Max-plus

 The max-plus algebra is an algebraic structure consisting of real numbers where
the standard operations of addition and multiplication are replaced by the operation of
taking a maximum and the operation of standard addition, respectively. More precisely,
let denote the set , let max {−∞∪ } ⊕ be a binary operator on with max

(max ,)x y x y⊕ = , and let ⊗ be the binary operator on with max x y x y⊗ = + . Then
the max-plus algebra is the algebraic structure consisting of and the binary
operations

max

⊕ and ⊗ .

 Interesting outcomes of the use of maximum as the addition operator are the
additive identity and the consequent lack of an additive inverse in this system. When we
seek an additive identity, we look for an element z such that z x x⊕ = for all .
The only way to guarantee this is to choose

maxx∈
z = −∞ . Thus, the max-plus algebra has −∞

as its additive identity. Clearly, the operation of taking a maximum is associative and
commutative, hence max(,⊕) is an abelian semi-group. max(,)⊕ is not a group,
because has an additive inverse if and only if maxx∈ x = −∞ .

 A consequence of the lack of additive inverses is that for ,a b ,∈ the equation
a x b⊕ = need not have a unique solution. Indeed, the solution to a x b⊕ = is x b= if
and only if a . If , then the solution for x can be any number less than or equal
to b, and if a , then

b<
b>

a b=
a x b⊕ = has no solution. The system a x⊕ = −∞ has a solution

 only if . Since (x = −∞) a = −∞ a a a⊕ = , every element of is idempotent with
respect to

max

.⊕

 Because max(,)⊕ is not an abelian group, max(, ,)⊕ ⊗ does not satisfy the
properties of a ring. However, we now show that max(, ,)⊕ ⊗ satisfies the properties of
a commutative semi-ring [5].

 2

Theorem 1.1.1: max(, ,⊕ ⊗) satisfies the following properties:
1. max(,)⊕ is an abelian semi-group.
2. Multiplication is associative and commutative.
3. There is a multiplicative identity.
4. Distributive properties of ⊗ over ⊕ , i.e. for max, ,x y z∈

a) ()z x y z x z y⊕ ⊗ ⊗ ⊕ = ⊗
b) ()x y z x z y z⊕ ⊗ ⊕ ⊗ = ⊗

5. The additive identity, −∞ , is absorbing under multiplication, i.e.
for maxx∈ , () . x x−∞⊗ = ⊗ −∞= −∞

Proof:
1. This was in the discussion immediately preceding the statement of the theorem.
2. Let max . Then, , ,x y z∈ () () () ()x y z x y z x y z x y z⊗ ⊗ = + + = + + = ⊗ ⊗ and
 x y x y y x y x⊗ = + = + = ⊗ .
3. Note 0 0 0 0x x x x⊗ = + = = + = ⊗ x . Thus 0 is the multiplicative identity.
4. Let max Then , , .x y z∈ () max(,) max(,)z x y z x y z x z y⊗ ⊕ = + = + +

z x z y= ⊗ ⊕ ⊗ . Statement (b) follows from (a) and the commutativity of ⊕ and ⊗ .
5. Let maxx∈ , then ()()x x⊗ −∞ = + −∞ = −∞ . ■

 The max-plus algebra can be extended to matrices. Max-plus matrix addition of

matrices is only defined for matrices of the same dimensions. We define the max-plus

matrix sum A B⊕ to be the matrix resulting from taking entrywise maximums. The

max-plus multiplication of a matrix by a scalar results in a matrix where each entry has

been increased by the scalar quantity.

Max-plus Matrix Operations:
Let and ijA a⎡ ⎤= ⎣ ⎦ ijB b⎡ ⎤= ⎣ ⎦ be m n× matrices with entries in and . max maxc∈

 max(,)ij ij ij ijA B a b a b⎡ ⎤ ⎡ ⎤⊕ = ⊕ = ⎣ ⎦⎣ ⎦

 ij ij ijc A c a c a a c A c⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ = ⊗ = + = + = ⊗⎣ ⎦ ⎣ ⎦ ⎣ ⎦
Let ijA a⎡ ⎤= ⎣ ⎦ be and m n× jkB b⎡ ⎤= ⎣ ⎦ be n p× with entries in . max

 Then AB is the matrix whose entry is m p× ,i j
 () () () ()1 1 2 2 maxi j i j i n n j i k k jj

a b a b a b a b⊗ ⊕ ⊗ ⊕ ⊕ ⊗ = + .

 3

 Throughout the paper, we use AB for max-plus multiplication of matrices A and
B. As we never use “usual matrix multiplication,” this should not lead to difficulties.
Because calculations in the max-plus algebra can take some getting used to, we find it is
helpful to pause at this point and elaborate with a numerical example.

Example: Matrix Operations

 Let and
10
5 3

A
−∞⎡ ⎤

= ⎢ ⎥
⎣ ⎦

8 2
7 0

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.

 Matrix Addition:

10 8 2 10 2

7 35 7 3 0
A B

⎡ ⎤⊕ −∞⊕ ⎡ ⎤
⊕ = =⎢ ⎥ ⎢ ⎥

⊕ ⊕ ⎣ ⎦⎢ ⎥⎣ ⎦

 Scalar Multiplication:

5 10 5 () 15

5
5 5 5 3 10 8

A
⊗ ⊗ −∞ −⎡ ⎤ ⎡

⊗ = =⎢ ⎥ ⎢⊗ ⊗⎣ ⎦ ⎣

∞⎤
⎥
⎦

Matrix Multiplication:

10 8 2
5 3 7 0

10 8 () 7 10 2 () 0

5 8 3 7 5 2 3 0

18 () 12 () 18 12
13 713 10 7 3

AB
−∞⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤⊗ ⊕ −∞ ⊗ ⊗ ⊕ −∞ ⊗

= ⎢ ⎥
⊗ ⊕ ⊗ ⊗ ⊕ ⊗⎢ ⎥⎣ ⎦

⎡ ⎤⊕ −∞ ⊕ −∞ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⊕ ⊕ ⎣ ⎦⎢ ⎥⎣ ⎦

Theorem 1.1.2: Matrix multiplication in max(, ,)⊕ ⊗ is associative, but not
necessarily commutative.

Proof:
Let A be , B be , and be m n× n p× C p q× matrices with entries from . max

The entry of (is ,i)AB C ()() ()
,

max max maxi j j k k i j j k kk j k j
a b c a b c⎛ ⎞+ + = + +⎜ ⎟

⎝ ⎠
.

The entry of ,i ()A BC is ()()() ()
,

max max maxi j j k k i j j k kj k j k
a b c a b+ + = + + c

)

.

Thus , and max-plus matrix multiplication is associative. () (AB C A BC=

 4

To show that matrix multiplication is not necessarily commutative, consider the
following simple counterexample:

 is not equal to . ■
1 2 1 0 2 2
3 4 0 0 4 4
⎛ ⎞⎛ ⎞ ⎛

=⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

1 0 1 2 3 4
0 0 3 4 3 4
⎛ ⎞⎛ ⎞ ⎛

=⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠ ⎝ ⎠

⎞
⎟

Powers in the max-plus algebra correspond to the usual scalar multiplication in

the real numbers. Let n be a positive integer and a∈ . Then we define as follows: na

 times times

n

n n

a a a a a a a n= ⊗ ⊗ ⊗ = + + + = ⋅a

For the max-plus algebra, we also include −∞ in the domain. Thus, we need only verify

that the rule will hold for na n= ⋅a a = −∞ and . 0n >

 times times

() () () () () () () ()n

n n

n−∞ = −∞ ⊗ −∞ ⊗ ⊗ −∞ = −∞ + −∞ + + −∞ = ⋅ −∞ = −∞

Theorem 1.1.3: In max(, ,)⊕ ⊗ , with ,x y +∈ and maxa∈ , the following
exponent properties hold:

1. x y xa a a +⊗ = y
2. ()x y xa a ⋅= y

Proof:
Let a and . ∈ ,x y +∈
1. ()x y xa a x a y a x y a a y+⊗ = ⋅ + ⋅ = + ⋅ =

() ()x y−∞ ⊗ −∞ = () () () () ()x y+−∞ ⊗ −∞ = −∞ + −∞ = −∞ = −∞
2. () () () ()x y y x ya x a y x a x y a a ⋅= ⋅ = ⋅ ⋅ = ⋅ ⋅ =

()() () ()
yx y x y⋅−∞ = −∞ = −∞ = −∞ ■

Notice that for , we can find y such that x∈ 0x y⊗ =

x
 (recall that 0 is the

multiplicative identity in max-plus). So each element ∈ has a multiplicative inverse
1x x− = − . In , there is no multiplicative inverse for zero, and similarly, in (, ,+ ⋅)

()

∈

max , ,⊕ ⊗

,x y

, there is no multiplicative inverse for the additive identity, . From this
definition of the multiplicative inverse, we can extend the properties in Theorem 1.1.3 to
include with the footnote that if , then (

−∞

0n >) n−−∞ will be undefined.

 5

In optimization problems where one is searching for some kind of minimization,
it is easier to formulate the problems in terms of a related algebraic structure, called the
min-plus algebra. The min-plus algebraic structure has elements with
binary operations

min { }= ∪ ∞

⊕ and . For ⊗ min,x y∈ , min(,)x y x y⊕ = and x y x⊗ = + y .
Indeed, min(, ,)⊕ ⊗ and max(, ,)⊕ ⊗ are isomorphic algebraic structures. Let

max min:θ → by ()x xθ = − . Then () max(,) min(,) ()x ()y x y x yθ⊕ = − = ⊕x yθ θ− − =
and () ()x y x yθ ⊗ = − + = () () () ()x y x yθ θ− + − = ⊗ . Thus, the result about the max-
plus algebra can be translated into a result about the min-plus algebra, that is,

min(, ,)⊕ ⊗ is also a commutative semi-ring. In particular, we will see the min-plus
algebra used in the shortest route problem (Section 2.1). Commonly in papers, the
operation ⊕ can be used to denote either a maximum or minimum, depending on the
situation. To distinguish between these cases and avoid confusion, in this paper we have
adopted the notation ⊕ for maximum and ⊕ for minimum.

 6

1.2 Solving Systems of Equations in Max-plus

 In this section, we develop the theory of linear systems of equations for the max-
plus arithmetic [3, 4]. Although there are some parallels between solving systems of
equations in max(, ,)⊕ ⊗ and in (), ,+ ⋅ , the operation ⊕ creates some interesting
differences. In general, we would like to be able to solve the matrix equation ,
where A is an matrix, is an

A =x b
m n× x 1n× vector, and is an b 1m× vector. It will be

helpful if we look at the equivalent system of equations in the usual arithmetic to first get
an idea for how to go about solving the system. We can rewrite A =x b as the following
detailed matrix equation and then the equivalent system of Max-plus equations:

 A =x b ⇔

11 12 1 1 1

21 22 2 2 2

1 2

n

n

m m mn n m

a a a x b
a a a x b

a a a x b

⎛ ⎞⎛
⎜ ⎟⎜
⎜ ⎟⎜ =
⎜ ⎟⎜
⎜ ⎟⎜⎜ ⎟⎜
⎝ ⎠⎝

⎞ ⎛ ⎞
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟
⎟ ⎜ ⎟⎟ ⎜ ⎟
⎠ ⎝ ⎠

 ⇔

() () ()
() () ()

() () ()

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n

a x a x a x b

a x a x a x b

a x a x a x b

⊗ ⊕ ⊗ ⊕ ⊕ ⊗ =

⊗ ⊕ ⊗ ⊕ ⊕ ⊗ =

m⊗ ⊕ ⊗ ⊕ ⊕ ⊗ =

Written in standard notation, we must simultaneously solve the following system:

{ }
{ }

{ }

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

max (),(), , ()

max (),(), , ()

max (),(), ,()

n n

n n

m m mn n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =

+ + + =

m+ + +

…

…

… =

We first consider the case that a solution exists and some of the entries of b are .
Without loss of generality, we can reorder the equations so that the finite entries of b
occur first:

−∞

111 12 1 1

21 22 2 2

1 2

b
n

bn k

n n nn n

a a a x
a a a x

a a a x

−∞

−∞

⎛ ⎞⎛ ⎞⎛
⎜ ⎟⎜ ⎟⎜
⎜ ⎟⎜ ⎟⎜ = ⎜ ⎟⎜ ⎟⎜
⎜ ⎟⎜ ⎟⎜⎜ ⎟⎜ ⎜ ⎟⎝ ⎠⎝ ⎝ ⎠

⎞
⎟
⎟
⎟
⎟⎟
⎠

 7

Written in standard notation, this gives the following system of equations:

()

()
()

()

11 1 12 2 1 1

1 1 2 2

1,1 1 1,2 2 1,

1 1 2 2

max , , ,

max , , ,

max , , ,

max , , ,

n n

k k kn n k

k k k n n

n n nn n

a x a x a x b

a x a x a x b

a x a x a x

a x a x a x

+ + +

+ + + =⎧
⎪
⎪
⎪ + + + =⎪
⎨

+ + + =⎪
⎪
⎪
⎪ + + + = −∞⎩

…

…

…

…

−∞

We can renumber the variables so that those j such that 1, ,, ,k j m ja a+ = −∞… occur first:

1 1

1

1 2

3

k

n

x b

x b

x

x

A A

A +

−∞ −∞
−∞

−∞ −∞
−∞

⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠⎝ ⎠

Let the dimensions of be . Let and 1A k ×
1

k

b

b

⎛ ⎞
⎜ ⎟′ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

b
1x

x

⎛ ⎞
⎜′ = ⎜
⎜ ⎟
⎝ ⎠

x ⎟
⎟ . Note that if

has a solution, then , and

A =x b

1+k nx x ∞= = − A ′ ′=x b . Thus, A =x b has a solution if and
only if is a solution to and solutions to ′x 1A b′ =x ′ A =x b are

−∞

−∞

′⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

x
x .

Therefore, the solvability of a system with infinite entries in can be reduced to

that of a system where all the entries in

b
′b

b

ja x

 are finite. Hence, we restrict our attention to

systems where all the entries of are finite. If there is to be a solution to the

system of max-plus equations, then

A =x b

ij ib+ ≤ for all { }1, ,i m∈ … and { }1, ,j n∈ … . To

search for a solution to the system, we first consider each component of x separately.

Consider, for example, 1x . If there is a solution to the system, then for

. Thus
1 1i ia x b+ ≤

1,2,= ,i m… 1 1iix b a≤ − for each i, leading us to the following system of upper

bounds on 1x :

 8

1 1 11

1 2 21

1 1m m

x b a
x b a

x b a

≤ −
≤ −

≤ −

If this system of inequalities has a solution, then it satisfies

{ }1 1 11 2 21min (),(), ,()m mx b a b a b a≤ − − −… 1 .
Similarly, we can find the possible solutions for 2, , nx x… , giving us the following
system of inequalities on the entries of : x

{ }
{ }

{ }

1 1 11 2 21

2 1 12 2 22

1 1 2 2

min (),(), , ()

min (),(), ,()

min (),(), ,()

m m

m m

n n n m

x b a b a b a

x b a b a b a

x b a b a b a

≤ − − −

≤ − − −

≤ − − −

…

…

…

1

2

mn

This leads us to a candidate for a solution to A =x b , which we will denote by . ′x

1

2

n

x
x

x

′⎛ ⎞
⎜ ⎟′⎜ ⎟′ =
⎜ ⎟
⎜ ⎟⎜ ⎟′⎝ ⎠

x where

{ }
{ }

{ }

1 1 11 2 21

2 1 12 2 22

1 1 2 2

min (),(), ,()

min (),(), , ()

min (),(), , ()

m m

m m

n n n m

x b a b a b a

x b a b a b a

x b a b a b a

′ = − − −⎧
⎪
′ = − − −⎪

⎨
⎪
⎪ ′ = − − −⎩

…

…

…

1

2

mn

 Before we pause for a numerical example, let us introduce another matrix to
simplify the process of solving a system of max-plus equations. We define the
discrepancy matrix, as follows: ,AD b

1 11 1 12 1 1

2 21 2 22 2 2
,

1 2

n

n
A

m m m m m mn

b a b a b a
b a b a b a

D

b a b a b a

− − −⎛ ⎞
⎜ ⎟− − −⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟− − −⎝ ⎠

b

Note that is simply a matrix with all the upper bounds of the ,AD b ix ’s and that each ix′
can be found by taking the minimum of the column of . thi ,AD b

 9

Example 1.2a: Max-Plus System with only one solution

Solve where A =x b

2 3 1
0 4 6
3 1 2
9 6 3

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

,
1

2

3

x
x
x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x , and .

6
10
5

11

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

A quick calculation gives the discrepancy matrix: ,

4 3 5
10 6 4
2 4 7
2 5 8

AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

 The entries for the candidate solution can be found by taking the minimum of each
column of . ,AD b

()
()
()

1

2

3

min 4,10,2,2 2

min 3,6,4,5 3

min 5,4,7,8 4

x

x

x

′ = =

′ = =

′ = =

Thus, is the candidate solution to (2 3 4)T′ =x A =x b . We can verify that this is
indeed a solution to by plugging it back in: A =x b

()
()
()
()

max 4,6,52 3 1 6
2

max 2,7,100 4 6 10
3

max 5,4,23 1 2 5
4

max 11,9,79 6 3 11

⎛ ⎞⎛ ⎞ ⎛
⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜− ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

⎞
⎟
⎟
⎟
⎟⎟
⎠

As we shall see, this will be the only solution to the matrix equation. ■

Example 1.2b: Max-Plus System with no solution

Solve where A =x b

2 3 1
0 4 6
3 1 2
9 6 3

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

,
1

2

3

x
x
x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x , and .

6
12
5
9

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

Then , which gives us the candidate solution of . ,

4 3 5
12 8 6
2 4 7
0 3 6

AD

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

b
⎟
⎟ ()0 3 5 T′ =x

When we try in the matrix equation, we see that it is not a solution: ′x

 10

()
()
()
()

max 2,6,62 3 1 6
0

max 0,7,110 4 6
3

max 3,4,33 1 2
5

max 9,9,89 6 3 9

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ = =⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

11
4

⎛
⎜
⎜
⎜
⎜⎜
⎝

⎞
⎟
⎟
⎟
⎟⎟
⎠

 ≠

6
12
5
9

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

The bolded entries do not match the corresponding entries of b . Since the components
of are the upper bounds, we know that a solution must satisfy , , and

. But then, from the second row, we have

′x
5≤

x 1 0x ≤ 2 3x ≤

3x ()3, 6x1 2x xma 0, 4 2x 11 1+ + + ≤ < .
Thus, this matrix equation has no solution. ■

Example 1.2c: Max-Plus System with infinitely many solutions

Solve where A =x b

2 3 1
0 4 6
3 1 2
9 6 3

A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

,
1

2

3

x
x
x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x , and .

8
13
5

10

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

Then , which gives us the candidate solution of . ,

6 5 7
13 9 7
2 4 7
1 4 7

AD

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

b
⎟
⎟ ()1 4 7 T′ =x

Check is a solution: ′x

()
()
()

()

max 3,7,82 3 1 8
1

max 1,8,130 4 6 13
4

max 4,5,53 1 2 5
7

max 10,10,109 6 3 10

⎛ ⎞⎛ ⎞
⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Thus is a solution to the given matrix equation. But notice that there are other
solutions that also work. Indeed, each of the form { where and

 is also a solution to . ■

′x

4}
x : (, ,7)Ta b=x x 1a ≤

b ≤ A =x b

In order to predict the number of solutions to the matrix equation A =x b , it will be
useful to define a “reduced” discrepancy matrix, ,AR b :

 , ()A ijR r=b where
1 if minimum of column

0 otherwise
ij

ij

d j
r

=⎧
= ⎨
⎩

 11

Below we show and ,AD b ,AR b for the examples 1.2a, b, and c. The bold entries for each
 show where the minimum occurs in each column. Notice that these are the ‘one’

entries of each corresponding
,AD b

,AR b .

Example 1.2a:
One solution

Example 1.2b:
No solutions

Example 1.2c:
Infinite solutions

,

4 5
10 6

4 7
5 8

AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

3
4

2
2

 ,

4
12 8 6
2 4 7

6

AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

3 5

0 3

 ,

6 5
13 9
2AD

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

7
7

4 7
1 4 7

,

0 0
0 0

0 0
0 0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

1
1

1
1

 ,

0
0 0 0
0 0 0

0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

1 1

1 1

 ,

0 0
0 0
0AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

1
1

1 1
1 1 1

Recall that for a column, j , in the matrix, the minimum entry of the column is the
maximum solution to the system of inequalities for

,AD b

jx . In order to change this system of
inequalities to a system of equalities, we must have equality in each row inequality, i.e.
there must be at least one minimum in each row of , i.e. there must be at least one 1
in each row of

,AD b

,AR b for a solution to exist. Indeed, we see that in example 1.2b, there are
rows of ,AR b that contain no 1’s (zero-rows).

Theorem 1.2.1: Let be a matrix equation in A =x b max(, ,)⊕ ⊗ where
is an m matrix, and is a

A
n× b 1n× vector with all entries finite.

a) If there is a zero-row in the reduced discrepancy matrix, ,AR b , then
there is no solution to the matrix equation.

b) If there is at least one 1 in each row of the reduced discrepancy matrix,

,AR b , then ′x is a solution to A =x b .

Proof:

a) Without loss of generality, denote the zero-row of ,AR b by row k. Suppose to the

contrary that x is a solution of A =x b . Then ()nj jmi k k jx b a b a≤ − < − . Thus

 12

j k j kx a b< for all j. Hence, x does not satisfy the kth equation and is not a solution

to A =x b .

+

b) We prove the contrapositive. Suppose ′x is not a solution to the matrix equation.

By definition, j k kjx b a′ ≤ − for all . Hence ,j k max()kj j kjj
a x b′+ ≤

kb

 and if is not a

solution then there is a k with

′x

x(kj)ja x′+ < . This is equivalent to j kma
j kjx b a< −′

for all j. Since ()minj jx b a′ = − for some , there is no entry in row k of ,AR b that

is 1. ■

Now, provided we know that a solution to A =x b exists, how can we tell the number of
solutions to this equation? We need to define the concept of fixed entries in ,AR b .

Definition: The 1 in a row of ,b is a variable-fixing entry if either AR
a) it is the only 1 in that row (a lone-one), or
b) it is in the same column as a lone-one.

 The remaining 1s are called slack entries.

A 1 in the jth column of ,AR b signifies the minimum of the upper bounds for jx . If there
are no other ones in the row where a one occurs, then the only way that the equation
corresponding to that row can be solved is to have jx achieve the bound. This causes the
value of jx to be fixed at a specific value, i.e. it is a variable-fixing entry. To illustrate
this principle, we circle the variable-fixing entries for the previous examples in the
following table.

Example 1.2a:
One solution

Example 1.2b:
No solutions

Example 1.2c:
Infinite solutions

,

0 1 1
0 0 0
0 0 0
1 1 0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b ,

0 1 0
0 0 1
1 0 0
1 0 0

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b ,

0 0 1
0 0 1
0 1 1
1 1 1

AR

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

 In Example 1.2a, all of the non-zero entries are variable-fixing entries. The first
row equation fixes the 2x component, 2 3x = . The second row equation fixes the 3x
component, . The third row equation fixes the 3x = 4 1x component, . When we 1 2x =

 13

reach the fourth row equation, all the components of have been chosen. None of the
components can be changed without causing an inequality in one of the first three rows.

x

,A

 In Example 1.2c, there are slack entries in R b . The first row equation fixes the

3x component, . The component solution to the second row equation has already
been fixed by the first row equation. In the third row equation, there are two possible
ways to achieve equality – with either

3 7x =

2 4x = or 3x 7= . But we have already fixed the

3x component to be 7. So now as long as 2x 4≤ , we will not cause any problems in this
or any of the row equations above it. Similarly, in the fourth row equation, the equality
can be satisfied by using the already fixed component of 3 7x = . As long as and

, the row equation will always be true.
1 1x ≤

2x 4≤

 The following theorem shows that in order for A =x b to have a unique solution,
each component of must be fixed, i.e. there can be no slack entries (a slack entry can
only exist if there are no variable-fixing entries in that column). Thus, for to
have a unique solution, there must be a lone-one in each column.

x
A =x b

Theorem 1.2.2: Let be a matrix equation in A =x b max(, ,)⊕ ⊗ where A
is an m matrix, is an n× b n 1× vector with finite entries, and a solution to
the equation exists.

a) If each column of ,AR b has a lone-one, then the solution to the matrix
equation is unique.

b) If there are slack entries in ,AR b , then there are infinite solutions to the
matrix equation.

Proof:
a) If there is a lone-one in each column of ,AR b , then there is a variable-fixing entry in

each column of ,AR b . There can be no slack entries since all the columns contain a
variable-fixing entry. All the components of x are fixed and thus the solution is
unique.

b) Let ijr be one of the slack entries in ,AR b and let x be a solution to the equation
A =x b . Since ijr is not fixed, then there are no fixed entries in the jth column of

,AR b . Thus, equality can be achieved for each row equation without using the jx

 14

component. Thus, while the value of jx does indicate the maximum value possible
for this component, any smaller value will not alter the existence of equalities in the
row equations. ■

 It is interesting to note that in (), ,+ ⋅ , an m n× system of linear equations has
either no solution, one solution, or an infinite number of solutions. Similarly, for an

 system of linear equations in m n× ()ma , ,x ⊕ ⊗ , we also have either no solution, one
solution, or an infinite number of solutions.

 15

1.3 Max-plus Eigenvalues and Eigenvectors

 Before we look at the eigenproblem in the max-plus setting, we review some
terminology from graph theory [1, 2]. For an n n× matrix, A, we can define the digraph
(or directed graph) of A, as the graph with vertices 1, where there is a directed arc
from i to

,n…
j with weight if and only if ija ija ≠ −∞

ji
. A path is a sequence of distinct

vertices such that there is an arc from to 1 2, ,i i , ki… 1ji + for 1, , 1j k= −… . We can
refer to the weight of a path as the sum of the weights of the arcs that make up that path.
The digraph, , is strongly connected if there is a path from any vertex to any other
vertex. If is strongly connected, then we say the matrix A is irreducible. For
example, the matrix A below is irreducible:

AD

AD

1v 2v

3v

2 4
3

5 1

 gives the digraph
2 5
3 4

1
A

−∞⎛ ⎞
⎜= ⎜
⎜ ⎟−∞ −∞⎝ ⎠

⎟−∞⎟

The matrix B (shown below) is reducible since there is no path from to any other
vertex.

3v

1v 2v

3v

2 4
3

5 1

 gives the digraph
2 5
3 4 1B

−∞⎛ ⎞
⎜= ⎜
⎜ ⎟−∞ −∞ −∞⎝ ⎠

⎟
⎟

 A cycle, σ , is a sequence, , of distinct vertices such that ,

. of adjacent arcs in the digraph that starts and ends at the same vertex
and does not travel through any other vertex more than once. When we discuss the cycle
in reference to a digraph, it can be described as a sequence of vertices,

1 2, , , ki i i… 1 2i → i

1

* i

2 3, , ki i i→ …

: i j

i→

σ → → → . We can also refer to a cycle within a matrix, *: , ,ij ia,jka aσ … . The
number of arcs in a cycle is called the length, σ . Note that for any σ , . In a
strongly connected graph, there must be at least one cycle originating at each vertex. For
matrix A given in the first example, has length 3 and originates at .
A loop is a cycle with length 1; in the digraph , shown above, there are loops at
and . For a cycle

nσ ≤

v
1 2v v→ → 3v → 1v 1v

AD 1

2v σ , the sum of its arc weights divided by the length, σ is called the
mean, ()M σ . For a matrix A with distinct cycles 1 2, , , nσ σ … σ , we define the

 16

maximum cycle mean by () max ()ii
A Mμ σ= . A graph that contains only the cycles

with the maximum cycle mean is called a critical graph.

 Let A be an matrix with entries from . Then we define n n× max λ∈

−∞

 to be

the eigenvalue of A with eigenvector , where at least one entry is not , provided x λ

and satisfy the max-plus equation x A λ= ⊗x x . We refer to (,)λ x as an eigenpair for

A. When we find a particular eigenvector, any max-plus scalar multiple of it is also an

eigenvector (Lemma 1.3.1). When we refer to a unique eigenvector, we include the

scalar max-plus multiples in the uniqueness.

Lemma 1.3.1: Let A be an n n× matrix with eigenpair (,)λ x and .
Then

c∈
(,)cλ ⊗ x is also an eigenpair of A.

Proof:

Suppose (,)λ x is an eigenpair for the irreducible n n× matrix A. Then we have

A λ=x ⊗x . Multiplying both sides of the equation by the scalar c, and then using the

commutativity of max-plus scalar multiplication, and the associativity of max-plus matrix

multiplication:

()
()

c A c
A c

A c

()
c

c

λ
λ

λ

⊗ = ⊗

⊗ =

⊗ = ⊗

n

⊗x x
⊗ ⊗

⊗

x x

x x ■

 There are many known results for the topic of max-plus eigenvalues and
eigenvectors [1, 3, 4]; in this paper, we present the results that pertain to irreducible
matrices, since this case is used in the application section 2.4. Before we consider the
irreducible matrix, there are several results that we first prove for the case of a matrix
with at least one cycle.

Lemma 1.3.2: Let A be an n× matrix with at least one cycle, then
a) A has finite eigenvalue k if and only if k A− ⊗ has eigenvalue 0.
b) ()A mμ = if and only if () 0m Aμ − ⊗ = .

 17

Proof:
a) Let ()0, x be the eigenpair for k A− ⊗ .
 Then we have the following equivalent statements:

 () 0k A− ⊗ = ⊗x x ⇔
11 1 1 1

1

0
n

n nn n

a k a k x x

a k a k x x

− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⊗⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠ n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 ⇔

()

()

11 1 12 2 1 1

1 1 2 2

max , , ,

max , , ,

n n

n n nn n

a k x a k x a k x x

a k x a k x a k x xn

− + − + − + =⎧
⎪
⎨
⎪ − + − + − + =⎩

…

…

 ⇔

()

()

11 1 12 2 1 1

1 1 2 2

max , , ,

max , , ,

n n

n n nn n

k a x a x a x

k a x a x a x

− ⊗ + + + =⎧
⎪
⎨
⎪ − ⊗ + + + =⎩

…

… n

x

x

 ⇔

()

()

11 1 12 2 1 1

1 1 2 2

max , , ,

max , , ,

n n

n n nn n

a x a x a x k x

a x a x a x k x

+ + + = ⊗⎧
⎪
⎨
⎪

n+ + + =⎩

…

… ⊗

 ⇔ A k= ⊗x x

b) Let ()A mμ = and let B m= − ⊗ A . Then the weight of any arc in BD has been

decreased by m from the corresponding arc in A, i.e. ij ijb a m= − . Let the cycle

*, ia: , ,A ij jka aσ … have the maximum cycle mean in A with length . Then

*() ij jk ia a a
A mμ

+ + +
= = .

Let *: , , ,B ij jkb b b iσ … be the same cycle taken, only taken from B, so then

*

*

*

()

() () (

()
0 .

ij jk i

ij jk i

ij jk i

b b b
B

a m a m a m

a a a mk

A m

μ

μ

)

+ +
=

− + − + + −
=

+ + −
=

= −
= ■

 18

Theorem 1.3.3: Let A be an n n× matrix with at least one cycle. Then there
exists an eigenpair (,)λ x for A where λ is finite.

Proof:

 Without loss of generality, by Lemma 1.3.2, we may assume A has a maximum cycle

mean of 0. It will be sufficient to show that A has eigenvalue 0. Let be the digraph

for A and let be the vector whose entry is the largest weight of a path in that

starts at i . If there is no path in that starts at i , then

AD

x thi AD

AD ix = −∞ . The entry of th j A x

is . ()max jkk
a xk+

 Consider . Suppose jk ka x+ jka = −∞ , then jk k ja x x+ = −∞ ≤ . Suppose ,

i.e. there is an arc from j to k. Let
jka ≠ −∞

α be a path that starts at k with largest weight, kx .

j k
α

Let ,j kα α′ = → . α′ may contain a cycle (α could pass through vertex j), but then α′

can be decomposed into a path that starts at j and a cycle. Since each cycle has non-

positive mean, α′ has weight at most jx . Hence, jk k ja x x+ ≤ . Therefore, we’ve shown

that ma . ()x jk ka x+ j≤ x
k

 Now let β be a path in with largest weight, AD jx that starts at j. Then β
is ,j m β ′→ for some vertex m and some path β ′ starting at m.

j m

β ′

jma

β

So the weight of β is () ()wt maxj jm jm m jk kk

x a a x aβ ′= + ≤ + ≤ +

) jx= x

x . Thus, we now have

that ma . Therefore, is an eigenvector of A corresponding to

eigenvalue 0.
(x jkk
a x

■
k+

 We now look at the eigenvalue for an irreducible matrix. It is easy to verify that
for an irreducible matrix, every vertex is the vertex of a cycle. We have already shown

 19

that if a matrix has a cycle, then the eigenvalue is finite. Thus, an irreducible matrix must
also have only finite eigenvalues.

Theorem 1.3.4: Let A be an irreducible n n× matrix. Then ()Aλ μ= is the
unique finite eigenvalue of A.

Proof:
Let A be an irreducible n matrix with entries in and be the digraph for A.
Let (be an eigenpair of A with

n× max AD

),λ x λ finite, then this eigenpair satisfies the equation
A λ= ⊗x

x
x . We first argue that all the entries of are finite. Suppose there are entries

of which are . We can renumber the variables to get in the form
x

−∞ x
1

k

x

x

−∞

−∞

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

x where 1, , kx x… are finite, and there are entries of . −∞

Then by examining the equation A λ= ⊗x x , we see that A must have the form

A −∞ −∞

−∞ −∞

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

⎟
⎟ , where the block of 's−∞ is k× and . k n+ =

If A is irreducible, then we should be able to find a path from j to i. But if we begin at a

vertex with index greater than k, there are only arcs to other vertices with index also

greater than k. Thus, this is a contradiction, so A is not irreducible. Therefore all the

entries of x must be finite.

 Now we return to the equation A λ= ⊗x x , which we can express as

11 12 1 1 1

21 22 2 2 2

3 3

1 2 4 4

n

n

n n nn

a a a x x
a a a x x

x x
a a a x x

λ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⊗
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

or equivalently,
()
()

()

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

max , , ,

max , , ,

max , , ,

n n

n n

n n nn n

a x a x a x x

a x a x a x x

a x a x a x x

λ

λ

λ

+ + + = +⎧
⎪

n

+ + + =⎪
⎨
⎪
⎪

+

+ + + =⎩

…

…

… +

.

 20

Consider an arbitrary cycle of length n≤ in . Without loss of generality, by

renumbering the vertices, let this be the cycle
AD

: 1 2 kv v v 1vσ → → → → or

12 23 1: , , , ka a aσ …

12 23 1, , , ka a a ∈…
. Note that necessarily, since are arcs of , then

. We now consider the set of inequalities which is produced using

only this cycle:

12 23 1, , , ka a a… AD

12 2 1

23 3 2

1 1k n

a x x
a x x

a x x

λ
λ

λ

+ ≤ +⎧
⎪ + ≤ +⎪
⎨
⎪
⎪ + ≤ +⎩

If we take the sum of these inequalities, we now have the following result:

12 23 1

12 23 1

()

k

k

a a a
a a a

M

λ

λ

σ λ

+ + + ≤ ⋅
+ + +

≤

≤

Since we arbitrarily chose a cycle from A, we now conclude that ()Aμ λ≤ .

 Each row equation for A λ= ⊗x x , ()1 1 2 2max , , ,i i i n na x a x a x xλ i+ + + =…

j ix

+ ,

must achieve equality for some j, i.e. ija x λ+ = + . Since A is strongly connected, and

each vertex must have out-degree at least 1, each vertex must have a cycle. This ensures

that we will eventually form a cycle, σ , that is made up of equality conditions, yielding

the following set of equations:

* *

ij j i

jk k j

i i

a x x

a x x

a x x

λ

λ

λ

+ = +⎧
⎪

+ = +⎪
⎨
⎪
⎪ + = +⎩

Taking the sum of these equations, we conclude that

* () ()ij jk ia a a
M A

σ

λ σ μ
+ + +

= = ≤ .

Therefore, ()Aλ μ= . ■

 21

It will be helpful to consider a numerical example. In example 1.3a, we outline the

process for finding the eigenvalue and eigenvector in great detail. In example 1.3b, we

give an example to illustrate the case that the digraph is not strongly connected.

Example 1.3a: Finding the Eigenvalue and Eigenvector for an Irreducible Matrix

 Let with
2
1 3

1 3
A

−∞ −∞⎛ ⎞
⎜ ⎟= −∞⎜ ⎟
⎜ ⎟−∞⎝ ⎠

:AD
1v 2v

3v

12

1 3
3

There are three cycles in A:

 1 22: ()aσ 1() 1/1 1M σ = =

 2 23 32: (,)a aσ 2() (3 3) / 2 3M σ = + =

 3 12 23 31: (, ,)a a aσ 3() (2 3 1) / 3 2M σ = + + =

Thus, () 3Aλ μ= = .

To find the eigenvector for 3λ = , we seek to solve
2
1 3 3

1 3

−∞ −∞⎛ ⎞
⎜ ⎟−∞ =⎜ ⎟
⎜ ⎟−∞⎝ ⎠

x x⊗

2

3

.

Or equivalently,
2 1

2 3

1 2

max(, 2 ,) 3
max(, 1 , 3) 3
max(1 , 3 ,) 3

x x
x x x

x x x

−∞ + −∞ = +⎧
⎪ −∞ + + = +⎨
⎪ + + −∞ = +⎩

.

Suppose , then it quickly follows that 1x = −∞ 2x and 3x also equal −∞ . Since the

eigenvector must have at least one entry not equal to −∞ , this cannot be. Thus, we let

 (recall that eigenvectors are only unique up to max-plus scalar multiples, so we

can now let

1 0x =

1x be any finite value), which results in the following set of equations.

2

2 3

2 3

max(, 2 ,) 3
max(, 1 , 3) 3
max(1, 3 ,) 3

x

2x x x
x x

−∞ + −∞ =⎧
⎪ −∞ + + = +⎨
⎪ + −∞ = +⎩

Further, we find that , and reduce the system to two equations: 2 1x =

 22

 3

3

max(, 2 , 3) 4
max(1, 4,) 3

x
x

−∞ + =⎧
⎨ −∞ = +⎩

This can be solved for 3x , yielding 3 1x = .

Thus, we have that for 3λ =

∈

, the eigenvector can be any of the form

, where c . ■

x x

(0,1,1)Tc= ⊗x

Example 1.3b: Matrix with Multiple Eigenvalues

 Let with
2 3
5 1

2
A

−∞⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−∞ −∞⎝ ⎠

∞ :AD

 This matrix has two eigenvalues, 4λ = with eigenvector ()4 0 1 T
λ= = −∞x and

2λ = with eigenvector . ■ ()0 T−∞2λ= = −∞x

1v 2v

3v

2 1
5

2

3

In Example 1.3a, we find only one eigenvector. We can follow up on this by proving

that, in fact, in certain instances, this eigenvector is essentially unique.

Theorem 1.3.5: Let A be an irreducible n n× matrix with eigenpair . If
the critical graph of A is strongly connected, then the is unique (up to max-
plus scalar multiples).

(,λ x)
x

Proof:

 Let A be an irreducible n matrix such that the critical digraph D of A is strongly

connected. Let and

n×

x y be eigenvectors of A corresponding to ()Aλ μ= . Since A is

irreducible, all entries of and x y are finite. By using max-plus scaling, we may assume

that . We show x1 1 0x y= = = y . Let j be any vertex. Since D is strongly connected,

there exists a path in D from to i j : 1 2 3 ki i i i i j= → → → → = . Since each arc of D

lies on a cycle of mean ()Aμ ,
1 1i ia x x,i i λ
+ +
+ = + ,i ia y and

1 1i iyλ
+ +
+ = + . Hence

 23

 24

i1 1i i ix x y y
+ +
− = − −

1
 (*) for … . As 1, , 1k=

1
,i ix y= (*) implies i ix y= . Therefore

=x y . ■

3 2
∞

Example 1.3c: Irreducible Matrix with Multiple Eigenvectors

 Let A = − with 3
1 3

−∞
−∞

−∞

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

:AD

3

This matrix has one eigenvalue, λ = . Since the critical

graph is not strongly connected (see digraph to right), we

expect the possibility of more than one eigenvector. In

particular, the eigenvectors for 3λ = are and (0 1 1 T)1 =x

{ }2 (0) :Td d d∈ ≤x

n×

1 . ■

 The most difficult step in calculating the eigenvalue and eigenvectors for an

irreducible n matrix, A, is the calculation of ()Aμ . Efficient algorithms have been

developed for computing ()Aμ , including an algorithm with computational complexity

, which can be found in [6]. 3()O n

1v

3v

2v3 2

1 3
3

1v 2v

3v

3

3
3

Chapter 2: Applications

2.1 Shortest Route Problem

 Consider a weighted digraph, a system of vertices connected by a collection of
(directed) weighted arcs. The arc weight may represent any quantity associated with that
arc such as a physical length, time, cost, etc. When examining such a labeling, one goal
is to find the shortest, i.e. the most efficient, path from one vertex to another.

 This problem can be formulated and solved using the min-plus algebra. Recall
that in this algebra, ⊕ represents the operation of finding a minimum and is the
additive identity. We can use a matrix, X, to represent this digraph, where each entry

∞

ijx
represents the smallest arc weight from i to j . If there is more than one arc between
and

i
j , then for the purposes of the shortest route problem, we simply choose the weight

of the shortest arc for the entry in the matrix. Note that ijx is not necessarily the same as

jix . If there is no path from to i j , then we assign the value of ijx = ∞ .

Example: Quickest traffic route
Consider the following map (a digraph) of a road system during rush hour, where the
vertices represent road intersections and the weight of each arc actually represents the
average time it takes to drive that arc. Notice that most arcs have different times
depending on which direction you are driving, the road connecting B and D is unaffected
by the rush hour traffic, and the road from A to E is one-way. We would like to find the
shortest driving time between any two intersections.

 : 3XXD

2 2 8
3 2 3

1 2
3 1 2

1

∞ ∞⎛ ⎞
⎜ ⎟∞ ∞⎜ ⎟
⎜= ⎟∞ ∞
⎜ ⎟
∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞ ∞⎝ ⎠

The entries of X show the shortest travel times between intersections for one-arc paths.
If we examine the entry of the matrix for ,i j 2X , it is

A

B
C

D
E

1←⎯⎯

8⎯⎯→
2←⎯⎯

↑ 2↓3
2⎯⎯→

1←⎯⎯
2⎯⎯→

1←⎯⎯
2⎯⎯→

3⎯→

3←⎯⎯
3⎯⎯→

⎯

 25

(1 1 2 2min , , ,i j i j in n)jx x x x x x+ + +… , which gives the shortest two-arc path from i to j .
Similarly, kX holds the shortest driving times for k-arc paths between intersections.
While searching for the shortest driving route between two intersections, we need only
calculate up to 1nX − n n× for an matrix. In this case, we need to find 2 3, ,X X and 4X ,
listed below.

2

5 3 4 4
5 3 4 4 5
4 5 3 4 4
4 2 5 3

4 2 3

X

∞⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟

∞⎜ ⎟
⎜ ⎟∞ ∞⎝ ⎠

3X =

6 5 5 6 6
6 5 5 6 6
6 4 5 5 6
5 6 4 5 5
5 3 6 4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∞⎝ ⎠

 4

6

X =

8 6 7
8 6 7
7 6 6
7 5 6 6

7

7
7
7

5 6 6

8
8
7
7

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Now, to find the shortest driving route from to i j , we need to find the minimum value
of the entry in the matrices 2 3, , ,X X and 4X , i.e. we need to find the matrix ijx X

2 3 4*X X X X X= ⊕ ⊕ ⊕
5 3 4 4 6
5 3 4 4 5

* 4 4 3 4 4
4 2 4 3 5
5 3 2 4 3

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Thus, in the matrix *,X the ijx entry gives the driving time of the shortest path from
vertex i to vertex j [4].

Min-Plus Solution to the Shortest Route Problem:
For a graph with n vertices and matrix representation X (written in terms of
min-plus algebra), let 2 1n*X X X X − . Then the ij of -entry *X= ⊕ ⊕ ⊕… is
the weight of the shortest route from vertex i to vertex .j

 26

2.2 The Project Scheduling Problem

 A primary field of importance in Operations Research is that of project
scheduling. A complicated project is made up of many tasks that must be accomplished
before the project is completed. Some tasks may be carried out simultaneously and
others have a precedence order. In project scheduling, we are generally concerned with
answering three questions:

1. What is the minimum time in which the project can be completed?
2. Which tasks are the most time-sensitive? If there is a delay in this task, will it

cause a delay in the overall production time? If so, then it is considered a
bottleneck.

3. Which tasks are the least time-sensitive? If a task is not a bottleneck, then
there is some slack time during which delays can occur without disruption to
the overall production. For these tasks there will be a critical time, beyond
which, delays in the overall production time will occur.

 The Project Scheduling Problem has been discussed in other papers [4, 5]; here
we present a slightly different formulation of this problem that we think is a little easier
to understand.

Example: Production Line
Six machines in a production line (A, B, C, D, E, and F) work together to produce a car
part. Note that when each machine has gone through its production cycle once, it might
produce components that are sent to several other machines. Consider the following task
precedence diagram and machine cycle times:

 A B

C D

E

F

Machine Time to complete
cycle (in minutes)

A 4
B 3
C 5
D 2
E 6
F 1

 27

Every arc in the diagram must be traveled in order for the part to be properly assembled,
thus, the minimum time in which the car part can be completed is the time it takes to
travel the longest path through the diagram. This should be somewhat reminiscent of the
shortest route problem except that we are searching for the maximum path, rather than
the minimum path. In order to designate machines with no predecessors and to include
the last cycle in the part’s completion, it will be helpful to introduce a “Start” and “End”
stage to our precedence tree. We denote these the α and ω vertices respectively. If a
machine has no predecessors, then the arc weight from α to one of these vertices is 0. If
machine X has a cycle completion time t, then all arcs leaving X should have a weight of
t. Thus, we can draw a new and more representative precedence diagram that includes all
the cycle completion times (see below).

0 0
4 4
3 3

5 5
2

6
1

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −⎜ ⎟
⎜ ⎟

A B

C D

E

F

α

ω

00

4

4 3 3

25

5

6

1

∞
−∞ −∞ −∞

⎜ ⎟
−∞

−∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −
⎜ ⎟

−∞ −∞⎜ ⎟
⎜ ⎟−∞
⎜ ⎟⎜ ⎟

∞

−∞⎝ ⎠

 Since the purpose of this problem is to find the maximum path weight through the
diagram, we will formulate the matrix representation, X (shown above), in terms of max-
plus. Thus, any arc that is not shown on the diagram will be assigned a weight of .
Since the digraph has no cycles, the representation matrix can be taken to be upper
triangular. We have added partition lines to the matrix

−∞

X to make it easier to read for
calculation purposes.

 28

 Just like the solution to the shortest path problem, we need to calculate
2* ... n 1X X X X += ⊕ ⊕ ⊕ to find the longest path for this problem, where n is the number

of machines (remember that we added two extra vertices to the diagram). To answer the
question of the minimum time to produce the car part, we will really only be concerned
with the *xαω entry, which will give us the maximum path weight from α (start) to ω
(end). The matrices 2 3, , ,... 7X X X X and *X are given below.

0 0
4 4
3 3

5 5
2

6
1

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞
⎜ ⎟

−∞ −∞⎜ ⎟
⎜ ⎟−∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

 2

4 3 4
9 9 5
8 8

11 6
8

7

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞
⎜ ⎟

−∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

3

9 9 5
15 10
14 9

12
9

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

 4

15 10
16
15

A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

5

16
A
B
C

X
D
E
F

α

ω

−∞ −∞ −∞ −∞ −∞ −∞ −∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞ −∞ −∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞ −∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞ −∞ −∞⎜ ⎟= ⎜ ⎟−∞ −∞ −∞ −∞
⎜ ⎟

−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞ −∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

 ()6 7,X X = −∞

 29

0 0 4 3 9 15
4 9 15 16
3 3 8 14 15

5 11 12
*

2 8 9
6 7

1

A
B
C

X
D
E
F

α

ω

−∞⎛ ⎞
⎜ ⎟−∞ −∞ −∞⎜ ⎟
⎜ ⎟−∞
⎜ ⎟

−∞ −∞⎜ ⎟= ⎜ ⎟−∞
⎜ ⎟

−∞⎜ ⎟
⎜ ⎟−∞⎜ ⎟⎜ ⎟−∞⎝ ⎠

16

*The bold entry, , denotes the

shortest production time for the part.
xαω

From the *xαω entry, we can see that the longest path from start to finish for the
production process takes 16 minutes to complete. We cannot produce the part in any
smaller time frame since every arc in the graph must be traveled.

There were two other questions concerning time-sensitivity that we wished to answer. To
answer these, we need to calculate the longest path through each machine and then use
this to calculate the available slack time for each machine. The longest path weight that
contains machine is given by the sum of the longest path from “Start” to and the
longest path from to “End”, or the expression

i
i

i
*

i i
*x xα ω⊗

*
i iv x

. Thus we can find a vector of
longest paths through each machine, , where v *

ixα ω= ⊗ . We then define a slack
vector, s , which is the minimum overall production time less the longest path through
each machine, where . *

i is x vαω= −

0 16 16
0 15 15
4 12 16
3 9 12
9 7 16
15 1 16

+⎛ ⎞ ⎛
⎜ ⎟ ⎜+⎜ ⎟ ⎜
⎜ ⎟ ⎜+

= =⎜ ⎟ ⎜
+⎜ ⎟ ⎜

⎜ ⎟ ⎜+
⎜ ⎟ ⎜⎜ ⎟ ⎜+⎝ ⎠ ⎝

v

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

16 16 0
16 15 1
16 16 0
16 12 4
16 16 0
16 16 0

−⎛ ⎞ ⎛
⎜ ⎟ ⎜−⎜ ⎟ ⎜
⎜ ⎟ ⎜−

= =⎜ ⎟ ⎜
−⎜ ⎟ ⎜

⎜ ⎟ ⎜−
⎜ ⎟ ⎜⎜ ⎟ ⎜−⎝ ⎠ ⎝

s

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

A
B
C
D
E
F

 For the purposes of this paper, we will define a bottleneck as any machine (or
task) for which the slack is zero. Any delay at a machine that is a bottleneck will cause
the overall production process to be delayed as well. For this problem, machines A, C, E,
and F are bottlenecks. The least time-sensitive machines are those with large slack values
– in this case, machine D has four minutes of slack. However, even those machines with
slack time have critical start times. The longest path from machine D to completion
requires 9 minutes (this is the value of *

Dx ω). If the production process starts at time zero,
then short delays (less than four minutes) at machine D can only occur in the first seven
minutes of the production run without causing on overall production delay. We will

 30

define the critical time to be the time after which any delay in this particular task will
delay the overall process. The critical time for each machine, , is simply the overall
minimum production time less the longest route from i to “End”, or

ic
* *

i ic x xαω ω= − .

16 16 0
16 15 1
16 12 4
16 9 7
16 7 9
16 1 15

−⎛ ⎞ ⎛
⎜ ⎟ ⎜−⎜ ⎟ ⎜
⎜ ⎟ ⎜−

= =⎜ ⎟ ⎜
−⎜ ⎟ ⎜

⎜ ⎟ ⎜−
⎜ ⎟ ⎜⎜ ⎟ ⎜−⎝ ⎠ ⎝

c

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

A
B
C
D
E
F

Max-Plus Solution to the Project Scheduling Problem:
1. Formulate a new precedence diagram for the project with new vertices for

α and ω . For any task i that has no predecessors, then assign a
directional arc from α to i with weight zero. For any task j that has no
successors, then assign a directional arc from j to ω with weight equal
to the completion time of task j . Then, for any other non-terminating
task k , assign all arcs leaving k a weight equal to the completion time of
task k.

2. Write the Max-plus matrix representation, X , for the graph where the i jx
entry is the arc length from task i to task j . If there is no arc connecting
i and j , then the i jx entry will be −∞ . If the vertices are labeled
appropriately, X should be upper triangular with all diagonal entries
equal to −∞ .

3. Find 2 1nX X X +X* = ⊕ ⊕ ⊕ , where n is the number of vertices before
the α and ω vertices were added.

4. The shortest overall completion time for the project is *xαω .
5. Find the longest route vector (v), the slack vector (s), and the critical

time vector (c). These are all 1n× vectors, they do not include the α
or ω vertices.

*
i iv x x*

iα ω= ⊗ *
i is x vαω= − * *

i ic x xαω ω= −

6. The bottlenecks are the tasks with slack time equal to zero (0is =). If
the slack time for task i is greater than zero, then there can be delays in
this task of time is≤ that will not effect the overall completion time as
long as the delays occur before the critical time, ic .

 31

2.3 Synchronized Events Problem

 The Synchronized Event Problem is similar to the Project Scheduling Problem in
that we want to schedule events to meet some deadline. However, the twist is that 1) the
events run simultaneously (instead of sequentially) and 2) we want the completion of the
longest event to occur exactly at the deadline. This type of situation will often occur with
very time-sensitive deadlines. For example, the coordination of system checks for a
Space Shuttle Launch, the preparation of a plane for a set takeoff time, or the preparation
of an athlete before an Olympic event.
 If we are only coordinating the events of a single deadline, then we can find the
latest start times by simply taking the difference of the finish time and individual event
duration times. For example, when an unloaded plane is brought to its new gate, it will
need refueling, maintenance, food service, and luggage service. Suppose these events
require times of 20 min, 30 min, 15 min, and 15 min, respectively, and that the plane is
supposed to taxi to the runway in 45 minutes. Then taking the difference shows that the
latest starting time for each event is as follows: refueling, 25 min; maintenance, 15 min;
food service, 30 min; and luggage service, 30 min.
 When we need to coordinate similar events for multiple deadlines, then we will
only be concerned with timing the maximum event duration with the deadline. For
example, consider the case where we now have three planes that arrive at their new gates
(A, B, and C) ready for pre-flight preparation. Each plane has different time requirements
for refueling and food service (related to the mileage of the next trip), maintenance
(depending on whether there were problems on a previous flight or the age of the plane),
and luggage service (related to both the mileage of the next trip and the number of
passengers on the flight). When on of the pre-flight maintenance teams is sent out, they
service all three planes at once (we assume here that there are enough people on each
maintenance team to accomplish this). The pre-flight preparation matrix is shown below
(event times are in minutes).

25 10 35 15 Gate 1
15 45 15 20 Gate 2
25 15 20 15 Gate 3

R M F L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 32

Note that in this case, it is in the best interest of the airport to load the food and luggage
as late as possible. Latest possible loading will ensure that the food will require the least
on-board refrigeration time. Likewise, latest loading of luggage will ensure that the
greatest amount of passenger luggage will reach the plane before it leaves the airport.

Example 2.3a: Departure times of 1 45d = , 2 50d = , 3 55d = minutes

We want to find the latest starting times for the procedures R, M, F, and L so that the last
procedure is completed at the departure time of the plane. This problem can be
formulated as the following max-plus matrix equation, where we want to solve for : t

1

2

3

4

25 10 35 15 45
15 45 15 20 50
25 15 20 15 55

t
t
t
t

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

We can quickly find the discrepancy matrix, , the reduced discrepancy matrix, aD aR ,
and the candidate solution, (as discussed in 1.3). *t

 a

20 35 10 30
35 5 35 30
30 40 35 40

D
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

a

1 0 1 1
0 1 0 1
0 0 0 0

R
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

20
5

10
30

⎛ ⎞
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

t

From aR , we can tell by the all-zero row that there will be no solution to the problem that
has been posed. Indeed we can verify this by trying ′t as a possible solution:

20
25 10 35 15 45

5
15 45 15 20 50

10
25 15 20 15

30

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠
45

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

he bold entry is the one that
causes the solution to fail.

 T

Although does not represent a strict solution to the matrix equation, it does not result
in a delay of deadline. That is, the plane at Gate 3 will be ready too soon rather than too
late. When the candidate solution is not a strict solution to the matrix equation, but it
does not result in a delay of any of the deadline, we will refer to this as a non-ideal
solution.

′t

 33

Example 2.3b: Departure times of 1 50d = , 2 55d = , 3 45d = minutes

The control tower decides to reschedule the takeoff times of the three planes due to the
extensive maintenance requirements of the plane at the second gate. This results in the
following matrix equation, discrepancy matrices, and candidate solution.

1

2

3

4

25 10 35 15 50
15 45 15 20 55
25 15 20 15 45

t
t
t
t

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

b

25 40 15 35
40 10 40 35
20 30 25 30

D
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 a

0 0 1 0
0 1 0 0
1 1 0 1

R
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

20
10
15
30

⎛ ⎞
⎜ ⎟
⎜ ⎟′ =
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

t

From the reduced discrepancy matrix we can see that the candidate solution, , is a
solution to the matrix equation. In this example, the start times for maintenance and food
service are fixed entries (lone-ones in the second and third column of

′t

aR). The start
times for refueling and luggage could be earlier without affecting the strict solution.
Notice that the presence of so many ones in the third row of aR indicates that for the
plane at Gate 3, most of the pre-flight procedures (all but food service) are timed to end
simultaneously.

 34

2.4 Airport Problem

In section 1.3, we discussed various results involving the eigenvalue and
eigenvector for an irreducible matrix. Before we present an application of the eigenvalue
and eigenvector, one might ask what kind of meaning the eigenvalue has in a given
problem. Thus, we first need to prove the following theorem.

Theorem 2.4.1: Let be an irreducible []ijA a= n n× max-plus matrix.

Then
* ,

() min m)ii j
A xax(ij ja xμ = +

x
− , where is the set of all non-*x

negative vectors. 1n×

Proof:

Since A is irreducible, A has eigenvalue ()Aμ and an eigenvector with finite

entries. We may scale so that every entry is non-negative. Thus,

x

x

ixmax() ()ij jj
a x Aμ+ = + for all and i ()

,
max()ij ii j

x Aμ=

)x x
ja x+ − . Now let , then

certainly

*∈xx

*
() minA

,
ma

i j
x(ij jiaμ ≥ + −

x
.

Let .Then for any ,
,

max()ij j ii j
m a x= + − x),i j (ij j im a x x≤ + − . Now consider a

cycle 1 2 1i i i i:σ → → → →… in with cycle length . Using this cycle, we have the

following system of inequalities:
AD

1 2 2 1

2 3 3 2

1 1

i i i i

i i i i

i i i i

a x x m

a x x

a x x m

m

+ − ≤

+ − ≤

+ − ≤

Taking the sum of these inequalities gives
1 2 2 3 1

1 2 2 3 1

()

i i i i i i

i i i i i i

a a a

a a a
m

M mσ

m+ + + ≤ ⋅

+ + +
≤

≤

Since ()M mσ ≤ for an arbitrary cycle σ , then ()A mμ ≤ . Thus

* ,
min max

i j
A() ()ij i ja x xμ ≤

x
+ − . ■

 35

Example: Airport Problem

Consider an airline company that manages three rural airports, E, F, and G. Each
airport can send flights to or receive flights from the other two airports. An airport may
also send and receive the same flight. We let A be the 3 3× matrix where the entry
represents the flight time for the flight from

ija
j to (note that this is the transpose of how

we would normally set up the matrix representation). If there is no flight from
i

j to ,
then . We define the eigenvector x as the vector where

i

ija = −∞ ix is the time when
airport i will open.
 E F

G

4

14

3 2
2

2

3
14 3

2 4 2
3 2

A
−∞⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−∞⎝ ⎠

:AD

In terms of this problem, we summarize the meaning of individual terms:

x The vector that contains the airport opening
schedule.

ij j ia x x+ − The time after opens that the plane from i j
arrives at i .

(
,

max ij j ii j
a x x+ −) The maximum time an airport needs to be open

given the schedule x .

(
* ,

min max ij j ii j
a x x+ −

x
)

The shortest equal time period that all the
airports would need to be open given any
possible non-negative schedule x . (λ=)

Thus, for this problem, the eigenvalue corresponds to the minimum equal time period that
all the airports must remain open to ensure that all the planes take off and land
appropriately.

Let’s find the eigenvalue and an eigenvector for the matrix A. There are six
cycles in . AD
 1 : F Fσ → 1() 4 /1 4M σ = =
 2 : E F Eσ → → 2() (14 2) / 2 8M σ = + =
 3 : F G Fσ → → 3() (2 2) / 2 2M σ = + =
 4 : G E Gσ → → 4() (3 3) / 2 3M σ = + =
 5 : E F G Eσ → → → 5() (3 2 2) / 3 7 / 3M σ = + + =
 6 : E G F Eσ → → → 6() (14 2 3) / 3 19 / 3M σ = + + =

 36

We seek an eigenpair (such that)8, x 8A = ⊗x x .

1 1

2 2

3 3

14 3
2 4 2 8
3 2

x x
x x
x x

−∞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = ⊗⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−∞⎝ ⎠⎝ ⎠

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

 ⇔
()
()
()

2 3

1 2 3

1 2 3

max , 14 , 3 8

max 2 , 4 , 2 8

max 3 , 2 , 8

1

2

x x x

x x x x

x x x

−∞ + + = +⎧
⎪

+ + + = +⎨
⎪ + + −∞ = +⎩

Let . Then the system becomes 1 0x =

()
()
()

2 3

2 3

2 3

max , 14 , 3 8

max 2, 4 , 2 8

max 3, 2 , 8

x x

2x x x

x x

−∞ + + =⎧
⎪

+ + = +⎨
⎪ + −∞ = +⎩

.

Solving for the remaining components, we have 2 6x = − or 3 5x = − .

This gives the eigenvector . We scale the eigenvector so that the

smallest entry is zero to keep from having to use negative times. We can use the max-
plus scalar multiple, , to give us an equivalent eigenvector . The
diagram below shows the time period in which each airport will be open, where each
airport will be open for 8 hours.

(0 6 5)T= − −x

6⊗x (6 0 1)T=x

:E

:F

:G

time: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Note that this schedule does not take into account the possible closings and

openings of airports within the 8-hour stretch. It only gives a schedule for when the

earliest opening and the latest closing occur. Also, we assume that the airport schedules

are dependent on flight scheduling and not vice versa.

 37

Conclusion

 In this paper, we have seen that many characteristics of the max-plus algebraic
structure are similar to those in more familiar mathematical structures. We can use
matrix operations, solve systems of max-plus equations, and have existence and meaning
for eigenvalues and eigenvectors.
 Through applications, we have seen that max-plus and min-plus provide
interesting tools that can be used to formulate and solve many problems of optimization.
There are numerous applications of max-plus, and they are certainly not limited to those
presented in this paper. We have tried to present the topic in an understandable and
reader-friendly way and encourage the reader to seek out new applications of the max-
plus algebra.

 38

References

1. R.B. Bapat, D. Stanford, and P. van den Driessche. Pattern properties and spectral

inequalities in max algebra. SIAM Journal of Matrix Analysis and Applications,
16(3): 964-976, 1995.

2. Norman Biggs. Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
3. Peter Butkovic. Strong regularity of matrices – a survey of results. Discrete Applied

Mathematics, 48:45-68, 1994.
4. R.A. Cuninghame-Green. Minimax Algebra. Lecture notes in Economics and

Mathematical Systems, 166. Springer 1979.
5. Stephane Gaubert. Methods and Applications of (max,+) Linear Algebra. INRIA

Rocquencourt, 1997.
6. R.M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete

Math 23:309-311 (1978).
7. Don Phillips, A. Ravindran, James J. Solberg. Operations Research, Principles and

Practice. John Wiley & Sons, 1976.
8. Peter Tannenbaum and Robert Arnold. Excursions in Modern Mathematics, 3rd ed.

Prentice Hall, 1992, p.254.

 39

Appendix: The Minimum Spanning Tree Problem

 Given an undirected graph with weighted edges, a spanning tree is a set of edges
that include every vertex on the graph. A minimum spanning tree (MST) is a spanning
tree with the smallest total edge length. For example, in a communications network, we
often want to find the most efficient way to connect several locations. For illustration, a
minimum spanning tree for the graph below has been marked with solid lines.

A

C

D

E

B

F

5
2

1

4

3

2

3

2

 There are several algorithmic procedures that may be used to find the minimum
spanning tree for a given problem. Here we present Prim’s algorithm [8], which always
results in a minimum spanning tree. Begin at any vertex of the graph and find the
shortest edge out of that vertex (this is the first vertex in the MST). Then find the
shortest edge out of either of the vertices in the MST that goes to an unincluded vertex.
Add this edge and vertex to the tree. Again, find the shortest edge out of any of the
included vertices in the MST that goes to an unincluded vertex. Add this edge and vertex
to the tree. Repeat this process until all the vertices have been included in the minimum
spanning tree. It is important to understand the algorithmic approach on a graph before
we present the min-plus procedure, so we have outlined the use of Prim’s algorithm for
finding the MST of the above graph in the following table.

The original graph. Choose a vertex to
begin with, in this example, we begin with
vertex A.

The shortest edge out of vertex A is path
 with length 3. So we choose this edge

to begin the MST.

A

C

D

E

B

F

5
2

1

4

3

2

3

2

AE

B C

A D

E F

5
2

1

4

3
2

3

2

 40

Now we look for the shortest edge out of
either A or E that will connect to B, C, D,
or F. There are two candidates, or

. Either will work; we include EB .
EB

EF

Now we look for the shortest edge out of
either A, E, or B that will connect to C, D,
or F. We choose edge

A

C

D

E

B

F

5
2

1

4

3
2

3

2

BC , which has a
length of 1.

Now we look for the shortest edge out of
either A, E, B, or C that will connect to D
or F. There are two candidate edges of
length 2, CD and EF . We include CD .

Finally, we have only one more vertex to
include, vertex F. The shortest edge to F
from the MST-in-progress is . This
completes the minimum spanning tree.

A

C

D

E

B

F

5
2

1

4

3
2

3

2

A

C

D

E

B

F

5
2

1

4

3
2

3

2

EF
A

C

D

E

B

F

5
2

1

4

3

2

3

2

The procedure is not difficult, but it can be quite difficult to ensure that you have
considered all the possible edges to non-included vertices as the number of vertices on
the graph increases. For this reason, we present a methodical and quick approach to
finding the minimum spanning tree using the min-plus algebra. Please note that in
problems where we seek to find a minimum spanning tree for a graph, it is necessary that
edges include both directions equally, that is ij jix x= for all i . In addition, when we
write the matrix representation for the graph, X, we do not include arcs that are loops
since these would never be considered in the MST. Thus, the

, j

iix entries will always be
 entries. Likewise, if i and ∞ j are not connected by an edge, then . ij jix x= = ∞

 41

5 3
1 2

5 1 2 3
2 4

3 2 4 2
3 2

A
B
C

X
D
E
F

∞ ∞ ∞ ∞⎛ ⎞
⎜ ⎟∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞

= ⎜ ⎟
∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞
⎜ ⎟⎜ ⎟∞ ∞ ∞ ∞⎝ ⎠

We now outline a min-plus algorithm, similar to Prim’s algorithm, for finding the

minimum spanning tree given the min-plus MST matrix representation of the graph.

Min-Plus Solution to find the Minimum Spanning Tree:
Choose a row, , to begin the process. i
Mark the row and column as included (using 1’s). thi thi
Repeat the following three steps until all the rows and columns are marked
as included.
1. Choose (circle) an entry, jkx , that remains in one of the included rows,

which is equal to the minimum value of all the entries in the included
rows. Also circle the kjx entry.

2. The thj row and column will already be marked as included. Now mark
the thk row and column as included (using 1’s).

3. Cross out (using X) any entry that is the intersection entry of an included
row and column.

The circled entries of the matrix X give the arcs that are included in the
minimum spanning tree. Note that a given graph may have more than one
minimum spanning tree.

In the min-plus algorithm, we mark rows and columns as “included” so that we keep a

record of which vertices have already been included in the minimum spanning tree. Once

a new vertex has been included, we no longer need to consider any edges that connect the

new vertex to any of the included vertices. Thus, the included row / column intersections

are removed (crossed out) at the end of each repetition. Although all the work to find the

MST using the min-plus algorithm can be done on a single copy of the matrix X, we will

show the procedure step by step through to completion on separate matrices.

 42

Example: Finding the Minimum Spanning Tree using the Min-plus Solution

We will find the MST for

5 3
1 2

5 1 2 3
2 4

3 2 4 2
3 2

A
B
C

X
D
E
F

∞ ∞ ∞ ∞⎛ ⎞
⎜ ⎟∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞

= ⎜ ⎟
∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞
⎜ ⎟⎜ ⎟∞ ∞ ∞ ∞⎝ ⎠

. The procedure follows.

We begin with the arbitrary choice of row 1
and mark the 1st row and 1st column as
included.

1
1 5 3

1 2
5 1 2 3

2 4
3 2 4 2

3 2

X

∞ ∞ ∞ ∞
∞ ∞ ∞

= ∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞

∞ ∞ ∞ ∞

Now we circle a minimum entry in the
included rows (in this step, the only
included row is the first one). The
minimum entry of row 1 is 15x , so we
circle this entry and the

51x entry and mark
the 5th row and column as included.

1 1
1 5 3

1 2
5 1 2 3

2 4
1 3 2 4 2

3 2

X

∞ ∞ ∞ ∞
∞ ∞ ∞

= ∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞

∞ ∞ ∞ ∞

Before we repeat the process, we need to
cross out any new intersection entries, in
this case, they are 11x and 55x .

1 1
1

X

∞

=

5 3
1 2

5 1 2 3
2 4

1 3 2 4

∞ ∞ ∞
∞ ∞ ∞

∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞
2

3 2∞ ∞ ∞ ∞

Now we find a new minimum entry in the
included rows (row 1 and row 5). Row 5
contains two minimum entries of 2.
Arbitrarily, we choose one of these, 52x .
Thus we circle 52x and 25x and mark the
2nd row and column as included.

1 1 1
1

X

∞

=

5 3
1 1 2

5 1 2 3
2 4

1 3 2 4

∞ ∞ ∞
∞ ∞ ∞

∞ ∞
∞

∞ ∞ ∞
∞ ∞

∞
2

3 2∞ ∞ ∞ ∞

 43

 44

12 21, ,
Now we cross out the new intersection
entries, x x 22 and x .

We find a new minimum entry in the
included rows (rows 1, 2, and 5), circling

23x and 32x . We mark the 3rd row and
column as included and then cross out the
new intersection entries, 31 13 33 35, , ,

1 1 1
1

X

∞

=

∞ 5 3
1

∞ ∞
∞ ∞ 1 2
5 1 2 3

2 4
1 3 2 4

∞ ∞
∞ ∞

∞ ∞ ∞ ∞
∞ ∞ 2
3 2∞ ∞ ∞ ∞

,x x x x
and 53.x

1 1 1 1
1

X

∞

=

∞ 5 3
1

∞ ∞
∞ ∞ 1 2

1 5
∞ ∞

1 ∞ 2 ∞ 3
2 4

1 3 2
∞ ∞ ∞

∞
∞

4 ∞ 2
3 2∞ ∞ ∞ ∞

 We find the new minimum entry in the
included rows (rows 1, 2, 3, and 5),
arbitrarily choosing 34x (56x would have
also been an acceptable choice). Entries

34x and 43x are circled and the 4th row and
column are marked as included. The new
intersection entries are crossed out.

1 1 1 1 1
1

X

∞

=

∞ 5 ∞ 3
1

∞
∞ ∞ 1 ∞ 2

1 5
∞

1 ∞ 2 ∞ 3
1 ∞ ∞ 2 ∞ 4
1 3 2

∞
∞ 4 ∞ 2
3 2∞ ∞ ∞ ∞

This must be the last step since there was
only one unincluded column/row at the end
of the previous step. The last choice for a
minimum entry in an included row is 56x .
Thus 56x and 65x are circled and the
remaining uncircled entries are crossed out.

1 1 1 1 1 1
1

X

∞

=

∞ 5 ∞ 3 ∞
1 ∞ ∞ 1 ∞ 2 ∞
1 5 1 ∞ 2 ∞ 3
1 ∞ ∞ 2 ∞ 4 ∞
1 3 2 ∞ 4 ∞ 2
1 ∞ ∞ 3 ∞ 2 ∞

This gives us the minimum spanning tree
for the graph with matrix X .

3
1 2

1 2
2

3 2 2
2

XMST

∞ ∞ ∞ ∞ ∞⎛ ⎞
⎜ ⎟∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞

= ⎜ ⎟
∞

∞ ∞ ∞ ∞ ∞⎜ ⎟
⎜ ⎟∞ ∞ ∞
⎜ ⎟⎜ ⎟∞ ∞ ∞ ∞ ∞⎝ ⎠

	Thesis - MaxPlus - TOC
	Table of Contents
	Introduction 1
	Chapter 1: The Max-Plus Algebra
	Chapter 2: Applications
	by Maria H. Andersen
	A thesis submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in MATHEMATICS.
	Laramie, WY

	Thesis - MaxPlus - Chapter 1
	Introduction
	Chapter 1: The Max-Plus Algebra
	Example: Matrix Operations
	Powers in the max-plus algebra correspond to the usual scalar multiplication in the real numbers. Let n be a positive integer and . Then we define as follows:
	For the max-plus algebra, we also include in the domain. Thus, we need only verify that the rule will hold for and .

	Example 1.2a: Max-Plus System with only one solution
	Example 1.2b: Max-Plus System with no solution
	Example 1.2c: Max-Plus System with infinitely many solutions
	One solution
	No solutions

	a) Without loss of generality, denote the zero-row of by row k. Suppose to the contrary that is a solution of . Then . Thus for all j. Hence, does not satisfy the kth equation and is not a solution to .
	One solution
	No solutions

	Thesis - MaxPlus - Chapter 2
	Chapter 2: Applications

